摘要
交通流速度、流量和密度是道路交通信息的主要参数,分析参数的特性并对其建模是研究交通信息重要部分。以浮动车和线圈采集的数据为研究对象,基于小波技术对数据除去噪声,并通过线性回归预测误差的衰减率选取合适的拟合阶数,从而运用线性回归方法对数据进行拟合。最后对北京市区某道路的采集数据进行分析,结果表明该模型具有可行性和有效性。
Vehicle speed, traffic volume and traffic flow density are the major parameters. It is important to analyse and model the relationship between the major parameters. The noise of the original data based on wavelet is canceled. And the degree is gotten by means of decay rates of error estimates on predictions to make linear regression for data fitting, Finally, a example is given to demonstrate the feasibility and effectiveness of the model based on the analysis of Beijing road collection data.
出处
《计算机工程与设计》
CSCD
北大核心
2008年第13期3499-3500,3504,共3页
Computer Engineering and Design
关键词
道路交通
小波消噪
线性回归
浮动车
感应线圈
road traffic
wavelet canceling noise
linear regression
floating car
inductive loop