期刊文献+

逼近论中的宽度问题

On Approximation Theory of Width Problem
下载PDF
导出
摘要 主要根据几种宽度定义提出对应的实例,讨论了周期函数Besov函数类的逼近问题,并简单介绍宽度的发展。 In this paper the several definitions of n-width are introduced. Based on which the authors present some new examples of each definition. Further more the approximation problem on periodic functions of Besov is discussed in detail. Finaly, the authors introduce the development of N-widths in brief.
出处 《河北理工大学学报(自然科学版)》 CAS 2008年第3期105-107,共3页 Journal of Hebei Polytechnic University:Social Science Edition
关键词 Besov函数类 N-宽度 各向同性 Besov class of functions N-width isotropic
  • 相关文献

参考文献1

二级参考文献14

  • 1Nikolskii S. M., Approximation of functions of several variables and imbedding theorem, New York: Springer- Verlag, 1975.
  • 2Kolmogorov A. N., Uber die deste Annaherung von-funktionen einer gegebehen funktionenklasse, Ann. Math., 1936, 37: 107-111.
  • 3Tikhomirov V. M., Diameters of sets in function spaces and the theory of best approximations, Uspekhi Mat. Nauk, 1960, 15(3): 81-120.
  • 4Babadzhanov S. B., Tikhomirov V. M., Diameters of a function class in a L^P-space (p ≥ 1), Izv Akad. Nauk UzbSSR Ser. Fiz.-Mat. Nauk, 1967, 11:24-30 (Russian).
  • 5Tikhomirov V. M., Some questions in approximation theory, Doctoral theses, MGU, Moscow, 1969
  • 6Makovoz Yu. I., A certain method of obtaining lower estimates for diameters of set in Banach spaces, Mat. Sb., 1972, 87:136-146
  • 7Ismagilov R. S., Diameters of sets in normed linear spaces and the approximation of functions by trigonometric polynomials, Uspekhi Mat. Nauk, 1974, 29(3): 161-178.
  • 8Tikhomirov V. M., Some questions in approximation theory, Nauka, Moscow 1975
  • 9Ismagilov R. S., N-dimensional diameters of compacta in Hilbert space, Funktsionai. Anal. Prilozhen., 1968, 2: 32-39.
  • 10Maiorov V. E., Linear diameters of Sobolev classes, Dokl. Akad. Nauk SSSR, 1978, 243:1127-1130.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部