期刊文献+

基于小波特征和多类支持向量机的病态语音识别方法 被引量:3

Application of modified wavelet features and multi-class SVM to pathological vocal detection
下载PDF
导出
摘要 研究一种应用小波特征向量和多类支持向量机进行病态语音识别的方法,该方法基于连续小波变换提取语音特征向量,利用多类支持向量机进行病态语音分类。为了简化二分类支持向量机进行多类分类时所带来的计算复杂性,根据一类支持向量机分类思想提出一种多类分类算法。该算法能够使每一类样本都独立地获得一个决策函数,通过决策函数的最大值来判断样本所属的类。实验表明,在病态语音识别系统中,多类支持向量机与小波特征向量相结合具有良好的识别效果和应用价值。 This paper researched the method of wavelet feature-vectors and multi-class Support Vector Machines (SVM) applied to pathological vocal detection, which extracted features of the pathological vocal based on continuous wavelet transformation and then classifies pathological vocal by multi-class support vector machine. In order to reduce computation complexity caused by using the standard SVM for multi-class classification, a new multi-class classification algorithm based on one-class classification was proposed. It can form a decision function for every single class sample and accordingly obtain the aim of classification based on maximum of decision function. Experimental results have shown that the pathological vocal detection system is feasible and applicable by the combination of multi-class SVM and wavelet feature-vectors.
出处 《计算机应用》 CSCD 北大核心 2008年第8期2097-2100,2116,共5页 journal of Computer Applications
关键词 病态语音识别 小波特征向量 一类支持向量机 多类支持向量机 pathological vocal detection wavelets feature vector one-class SVM multi-class SVM
  • 相关文献

参考文献14

  • 1ALONSO J B, LEON J D, ALONSO I, et al. Automatic detection of pathologies in the voice by HOS based parameters [ J]. EURASIP Journal on Applied Signal Processing, 2001,2001(4):275 -284.
  • 2CEBALLOS G L, HANSEN J, KAISER J. A non-linear based speech feature analysis method with application to vocal fold pathology assessment[ J]. IEEE Transaction on Biomedical Engineering, 2005, 45(3) : 300 - 313.
  • 3ADNENE C, LAMIA B. Analysis of pathological voices by speech processing[ J]. Signal Processing and Its Applications, 2003, 1 ( 1 ) : 365 - 367.
  • 4MANFREDI C. Adaptive noise energy estimation in pathological speech signals[ J]. IEEE Transactions on Biomedical Engineering, 2000:47(11) : 1538 - 1543.
  • 5LIORENTE J I , VILDA G P. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors[ J]. IEEE Transactions on Biomedical Engineering, 2004:51(2): 380-384.
  • 6WALLEN E J, HANSEN J H. A screening test for speech pathology assessment using objective quality measures[ C]// ICSLP 96. New York: IEEE Press, 1996, 2:776 -779.
  • 7FREDOUILEE C. Application of automatic speaker recognition techniques to pathological voice assessment (dysphonia) [ EB/OL]. [ 2007 -08 -23]. http://www.lia. univ-avignon, fr/fich art/612 - Eurospeech05 Patho_v2.0. pdf.
  • 8MAGUIRE C. Identification of voice pathology using automated speech analysis[ C]//3rd International Workshop on Models and Analysis of Vocal Emission for Biomedical Applications. Florence, Italy: IEEE Press. 2003: 103.
  • 9ДЕМИНИМ, ИВАНОВ О В, НЕЧИТАЙЛО В А. Вейвлеты и их использование[J].Успехи Физических наук,2001,171(5):465-500.
  • 10МАЛЛА С. Вейвлеты в обработке сигналов[M].М.: Мир,2005.

二级参考文献5

  • 1Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 2Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 1998, 2(2) :121 - 167
  • 3Bennett K, Blue J. A Support Vector Machine Approach to Decision Trees. In: Proc of the IEEE International Joint Conference on Neural Networks. Anchorage, Alaska, USA, 1998, 2396-2401
  • 4Weston J, Watkins C. Multi-Class Support Vector Machines. Technical Report. CSD-TR-98-04, Deparmaent of Computer Science, Royal Holloway University of London, England, 1998
  • 5Tax D. One-Class Classification. Ph. D Thesis. Delft University of Technology, Delft, Netherlands, 2001

共引文献176

同被引文献17

  • 1徐秉铮,邱伟.汉语普通话声母的分类与识别[J].中文信息学报,1993,7(1):33-39. 被引量:5
  • 2张军,张德运,傅鹏.基于模糊多类支持向量机的语音质量客观评价[J].西安交通大学学报,2006,40(2):199-202. 被引量:3
  • 3毛大伟,曹华,木拉提.哈米提,童勤业.基于美尔倒谱系数和复杂性的说话人识别[J].生物医学工程学杂志,2006,23(4):882-886. 被引量:2
  • 4Liorente J I, Vilda G P. Automatic Detection of Voice Im: pairments by Means of Short Term Cepstral Parameters and Neural Network Based Detectors[J]. IEEE Trans on Bio-medical Engineering, 2004, 51(2):380 -384.
  • 5Hsu Chihwei, Lin Chihjen. A Comparison of Methods for Multi-Class Support Vector Machines[J]. IEEE Trans on Neural Networks, 2002, 17,(2):415-425.
  • 6Zheng Sheng,Liu Jian,Tian Jiawen.An efficient star acquisition based on SVM with mixtures of kernels [J]. Pattern Recognition Letters, 2005,26 : 147-165.
  • 7Chen Guanyi,Dudek Gregory.Auto correction Wavelet Support vector Machine and its Application to Regression [A].Proceedings of the Second Canadian Conference on Computer and Vision (CRV' 05 )[C].2005 : 2319-2325.
  • 8MATTHIAS WOLFEL. Minimum variance distortionless response spectral estimation and substraction for robust speech recognition[D]. Germany: Carnegie Mellon University, 2003.
  • 9陆阳.基于支持向量机的水中目标识别研究[D].西安:西北工业大学,2003.
  • 10祁立,刘玉树.基于两阶段聚类的模糊支持向量机[J].计算机工程,2008,34(1):4-6. 被引量:5

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部