期刊文献+

基于应用偏好模糊聚类的网格资源选择 被引量:4

Grid resource selection based on preference-based fuzzy clustering
下载PDF
导出
摘要 提出了在网格环境中为应用选择合适资源的策略,设计了相应的资源选择算法和资源选择架构,实现了该策略的网格应用。该策略将应用偏好定义为一个向量,向量的每个分量对应着应用对资源某方面性能的偏好,使用模糊聚类技术结合应用偏好将网格资源划分为不同性能的集合,然后应用资源选择算法评估各个集合的平均性能并从中选择合适资源。应用该策略选择资源,可以满足应用需求,缩小资源搜索空间,降低资源分配开销,也有助于实现网格环境的负载平衡。 This paper proposes a resource selection approach for application to locate proper grid resources, and a resource selection algorithm and a resource selection framework have been developed to realize grid application. It defines application preference as a vector with m elements, one element for one side of resource performance, and applies fuzzy clustering technology to create resource sets of different performances according to application preferences. Then it evaluates the performance of every resource set and selects suitable resources using the resource selection algorithm. Besides meeting application requirements, this approach can decrease the cost on resource selection by reducing the search space of available resources. Furthermore.load balance in grid environments can also be improved.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第7期1403-1407,共5页 Chinese Journal of Scientific Instrument
基金 新世纪优秀人才支持计划资助(NCET-06-0300) 国家自然科学基金(60473099)资助项目
关键词 模糊聚类 网格 资源选择 应用偏好 fuzzy clustering grid resource selection application preference
  • 相关文献

参考文献3

二级参考文献22

  • 1K Kaneda, K Taura, A Yonezawa. Virtual private grid: A command shell for utilizing hundreds of machines efficiently. In: Proc of the 2nd IEEE/ACM Int'l Symp Cluster Computing and the Grid (CCGRID2002). Los Alamitos, CA: IEEE Computer Society Press, 2002. 198~205
  • 2N Ramos-Hernandez, O Tokhi, et al. Mapping and scheduling for heterogeneous architectures. Microprocessors and Microsystems, 1999, 23(1): 7~23
  • 3H Topcuoglu, S Hariri, et al. Task scheduling algorithms for heterogeneous processors. In: Proc of the 8th Heterogeneous Computing Workshop. Los Alamitos, CA: IEEE Computer Society Press, 1999. 3~14
  • 4B R Carter, D W Watson, et al. Generational scheduling (GS) for dynamic task management in heterogeneous computing sysytems. Journal of Information Sciences, 1998, 106(1): 219~236
  • 5J Subhlok, P Lieu, et al. Automatic node selection for high performance applications on networks. In: Proc of the 7th ACM SIGPLAN Symp on Principles and Practice of Parallel Programming. New York: ACM Press, 1999. 163~172
  • 6R Wolski, N Spring, J Hayes. The network weather service: A distributed resource performance forecasting service for metacomputing. Journal of Future Generation Computing Systems, 1999, 15(5-6): 757~756
  • 7NAS. NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB/, 2002-11-13
  • 8Qiao WG,Zeng GS,Hua A,Zhang F.Scheduling and executing heterogeneous task graph in grid computing environment.In:Zhuge Hai,Fox G,eds.Proc.of the 4th Int'l Workshop on Grid and Cooperative Computing (GCC 2005).LNCS 3795,Beijing:Springer-Verlag,2005.474-479.
  • 9Sih GC,Lee EA.A compile-time scheduling heuristic for interconnection constrained heterogeneous processor architectures.IEEE Trans.on Parallel and Distributed Systems,1993,4(2):75-87.
  • 10Hou ESH,Ansari N,Ren H.A genetic algorithm for multiprocessor scheduling.IEEE Trans.on Parallel and Distributed Systems,1994,5(2):113-120.

共引文献67

同被引文献25

  • 1陈智,隋光远,皮秀云.论知识点是人的认知单位[J].心理科学,2002,25(3):369-370. 被引量:23
  • 2张惠君,张春红,萧德洪,林佳.“CALIS重点学科网络资源导航库”标准与规范述评[J].大学图书馆学报,2006,24(3):28-32. 被引量:21
  • 3Engel G,Roberts E. Computing Curricula 2001[R]. IEEE Computer Society, Association for Computing Machinery, 2001.
  • 4Jean - Marc R, Gracia G. Experimental study on the reuse of learning objects and teaching practices[C]//Proc. Int'l Conf. on Education and Technology. Calgary,Canada, 2005:107-112.
  • 5Sanchez - Alonso S, Garcia - Barriocanal E. Making use of upper ontologies to foster interoperability between SKOS concept schemes[J]. Online Information Review, 2006,30 (3) : 263-277.
  • 6Jovanovie J, Gagevic D, Devedzic V. Dynamic assembly of personalized learning content on the semantic Web[C]//Proc. of the 3rd European Semantic Web Conference 2006 (ESWC2006). Budva, Montenegro: Springer Verlag, 2006 : 544-558.
  • 7Felder R M,Silverman L K. Learning and teaching styles in engineering education[J]. Journal of Engineering Education, 1988, 78(7) : 674-681.
  • 8ROBERTO V, GEORG G, MANFRED S. Functional Principal Component Analysis of FMAI Data[J]. Hu- man Brain Mapping, 2004, 24(2) :109-129.
  • 9汪培庄.模糊数学与优化[M].北京:北京师范大学出版社,2013.
  • 10RUSPINI E H. A New Approach to Clustering[J]. Information and Control, 1969, 15(1) :22-32.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部