期刊文献+

处理缺失数据的朴素贝叶斯分类增量算法 被引量:2

Incremental Na■ve Bayesian Algorithms with Missing Data
下载PDF
导出
摘要 在具有缺失数据的数据集的分类过程中,缺失的数据中蕴含着有用的信息未被考虑的情况会引起分类精度的下降。增量式的学习能够利用不断加入的信息更新学习模型,并充分利用先验信息求解当前问题。给出了一个利用朴素贝叶斯分类模型实现对缺失数据的增量分类的算法。该算法在增量学习的过程中考虑了缺失数据和先验信息对分类器的影响。 The precision of classifier with missing data will decrease if the useful information in the missing data is not be considered. Incremental learning can update study model based on the adding new data, and the prior information is fully used to solve current problem. The incremental Naive Bayesian learning algorithms with missing data is provided. The algorithms consider the effect of missing data and prior knowledge to the precision of classifier during incremental learning.
出处 《科学技术与工程》 2008年第14期3812-3815,共4页 Science Technology and Engineering
基金 清华大学智能技术与系统国家重点实验室开放课题(99002)资助
关键词 增量学习 朴素贝叶斯 缺失数据 incremental learning Nalve Bayes missing data
  • 相关文献

参考文献7

  • 1[1]Riedman N F,Geiger Dan.Bayesian network classifier.Machine Learning,1997; 29:131-163
  • 2[2]Dominigo S P,Pazzani M.On the op timality of the simp leBayesian classifier under zeroyone loss.Machine Learning,1997; 29:103-130
  • 3[3]D'Ambrosio B.Incremental evaluation and construction of defeasible probabilistic models.International Journal of Approximate Reasoning,1990;4:233-260
  • 4[4]Geiger D,Heckerman D.A characterization of the Dirichlet distribution with applicable to learning Bayesian network.Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence.Montreal,QU,1995;196-207
  • 5林士敏,田凤占,陆玉昌.用于数据采掘的贝叶斯分类器研究[J].计算机科学,2000,27(10):73-76. 被引量:30
  • 6程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 7李晓毅,徐兆棣.增量式贝叶斯分类的原理和算法[J].沈阳工业大学学报,2006,28(4):422-425. 被引量:7

二级参考文献20

  • 1[1]Friedman N. Bayesian Network Classifiers. Machine Learning, 1997,29:131~163
  • 2[2]Duda R O, Hart P E- Pattern Classification and Scence Analysis, New York: John Wiley & Sons, 1973
  • 3[3]Langley P, et al. An analysis of Bayesian classifiers. In: Proc. Of the National Conf. On Artificial Intelligence (AAAI' 92). Menlo Park, CA: AAAI Press, 1992. 223~228
  • 4[4]Chow C K, Liu C N. Approximating discrete probability distributions with dependence tree. IEEE Trans. On Information Theory, 1968,14: 462~467
  • 5[5]Pearl J. Probabilistic Reasoning in Intelligent Systems. San Francisco ,CA: Morgan Kaufmann, 1988. 387~390
  • 6[6]Elkan C. Boosting and naive Bayesian learning : [Technical Report No. CS97-557]. Department of Computer Science & Engineering, Univ. Of California, 1997
  • 7Friedman N, Goldszmidt M. Building classifiers using Bayesian network [A]. Proc Nation Conference on Artificial Intelligence [C]. Menlo Park, CA: AAAI Press, 1996, 27-1284.
  • 8Friedman N. Bayesian network classifiers[J]. Machine Learning, 1997(29): 131-163.
  • 9Blake C , Keogh E, Merz C. UCI repository of machine learning database [EB/OL]. http://www.ics.uci.edu/-mlearn/MLRepository.html ,1998/2003-12-12.
  • 10Marco R,Paola S.Bayesian methods for intelligent data analysis[M].New york:Springer Press,1999.

共引文献56

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部