期刊文献+

水煤浆流经小曲率半径弯管的阻力特性研究 被引量:2

A Study of Resistance Characteristics of Coal-water Slurry Passing Through a Tube Bend with a Small Curvature Radius
下载PDF
导出
摘要 在自制试验台上研究了水煤浆流经小曲率半径90°水平弯管的局部阻力特性,分析了不同的曲率半径Rc对弯管的局部压力损失、压力损失系数以及摩擦阻力损失之比的影响。结果表明:随着雷诺数Re的增加,弯管的局部压力损失增大,而压力损失系数先降低后增加。考虑到曲率半径较小,弯管的局部压力损失由不规则流动损失与弯管轴线加长所产生的沿程阻力决定。弯管曲率半径越大,临界雷诺数就越大。弯管摩擦阻力损失之比随着Dean数的增加先降后升。Rc/R为4.0的弯管的局部压力损失、压力损失系数以及摩擦阻力损失之比均最小。 On a self-made test stand,studied were the local resistance characteristics of water-coal slurry passing through a 90° horizontal tube bend with a small curvature radius along with an analysis of the influence of various curvature radii Rc on the local pressure loss,pressure loss coefficient and friction resistance loss ratio of the bend. The results of the study show that with an increase of Reynolds Number Re,the local pressure loss of the bend will increase,but the pressure loss coefficient will first decrease and then increase. In view of the curvature radii being relatively small,the local pressure loss of the bend will be determined by the irregular flow loss and the path resistance produced by the lengthened axial line of the bend. The greater the curvature radius of the bend,the greater the critical Reynolds Number. The friction resistance loss ratio of the bend will first go down and then up with an increase of Dean Number. When the Rc/R of the bend equals 4,its local pressure loss,pressure loss coefficient and friction resistance loss ratio will all attain a minimum value.
出处 《热能动力工程》 CAS CSCD 北大核心 2008年第4期425-428,共4页 Journal of Engineering for Thermal Energy and Power
基金 国家重点基础研究发展计划(973)基金资助项目(2004CB217701)
关键词 水煤浆 曲率半径 压力损失系数 临界雷诺数 coal-water slurry,curvature radius,pressure loss coefficient,critical Reynolds Number
  • 相关文献

参考文献13

  • 1TURIAN R M, MAT W, GHSU F L, et al. Flow of concentrated non- newtonian slurries:2, friction losses in bends, fittings, valves and yenturi meters[J]. Int J Muhiphase Flow,,1998,24(2) :243 - 269.
  • 2ETEMA GH S.Turbulent flow friction loss coefficients of fittings for purely viscous non-newtonian fluids[J]. Int Comm Heat Mass Transfer, 2004,31(5) :763 - 771.
  • 3TARUN KANTI BANDYOPADHYAY, SUDIP KUMAR DAS. Non-newionian pseudoplastic liquid flow through small diameter piping components[J]. Petroleum Science and Engineering, 2007,55:156- 166.
  • 4NIGAM K D P,SHOBHA AGARWAL ,SRIVASTAVA V K.Laminar convection of non-newtonian fluids in the thermal entrance region of coiled circular tubes [J]. Chemical Engineering Journal,2001,84:223 -237.
  • 5SINGH R P, MISHRA P. Friction factor for newtanian and non-newtonian fluid flow in curved pipe[J] .J Chem Eng, 1980,13:275 -280.
  • 6MUKHTAR A, SINGH S N, SESHADRI V. Pressure drop in a long radius 90° horizontal bend for the flow of multisized heterogeneous slurries [J]. Int J Multiphase Flow, 1995,21(2) :329 - 334.
  • 7JURE MARN, PRIMOZ TERNIK. Laminar flow of a shear-thickening fluid in a 90° pipe bend [ J ]. Fluid Dynamics Research, 2006, 38 : 295 - 312.
  • 8OLIVEIRA P J. Asymmetric flows of viscoelastic fluids in symmetric plannar expansion geometries[ J]. J Non-Newtonian Fluid Mech, 2003, 114:33-63.
  • 9WHITE R G, FISHER M J, BERRY J F W. Test facilities techniques and instrumentation[J]. Journal of Sound and Vibration, 1973,28(3) : 619 - 622.
  • 10MISHRA P, GUPTA S N. Momentum transfer in curved pipes, part 2: non-newtonian fluids[ J] . Ind Eng Chem Process Des, 1979,18 : 137 - 142.

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部