期刊文献+

气相爆轰高阶中心差分-WENO组合格式自适应网格方法 被引量:7

High Order Hybrid Central-WENO AMR Method for Gaseous Detonation
下载PDF
导出
摘要 研究一种高阶中心差分-WENO组合格式,并采用自适应网格方法进行二维和三维气相爆轰波的数值模拟.采用ZND爆轰模型的控制方程为包含化学反应源项的Euler方程组.组合格式在大梯度区采用WENO格式捕捉间断,在光滑区采用高阶中心差分格式提高计算效率.采用一种基于流场结构特征的自适应网格.计算结果,表明这种方法同时具有高精度、高分辨率和高效率的特点. A high order hybrid central-WENO finite difference scheme with adaptive mesh refinement (AMR) for numerical simulation of gaseous detonations is presented. Governing equations are two- and three-dimensional reactive Euler equations in a ZND detonation model. The hybrid scheme combines high order central finite difference schemes and WENO schemes effectively. In high gradient regions, WENO schemes are empolyed to capture discontinuity, while in smooth regions a more efficient and accurate central finite difference scheme is adopted. The AMR grid is based on flow field structure. Numerical results show that a hybrid scheme with AMR method has characteristics of high-order, high-resolution, and high-efficiency.
作者 刘国昭 张树道 Liu, Guozhao[1]; Zhang, Shudao[2]
出处 《计算物理》 EI CSCD 北大核心 2008年第4期387-395,共9页 Chinese Journal of Computational Physics
基金 国家自然科学基金(10676004,10676005) 计算物理重点实验室基金资助项目
关键词 高阶差分格式 组合格式 自适应网格 气相爆轰波 high order finite difference scheme hybrid scheme adaptive mesh refinement gaseous detonation
  • 相关文献

参考文献2

二级参考文献48

  • 1[1]Tam C K. Computational aeroacoustics issues and methods. J AIAA, 1995,33(10):1788-1796
  • 2[2]Crighton D G. Goals for computational aeroacoustics. Computational Acoustics: Algorithms and Applications, 1988, 3-20
  • 3[3]Lighthill M J. Report on the final panel discussion on computational aeroacoustics. Inst for Computer Applications in Science and Engineering, ICASE Rept, 1992
  • 4[4]Hixon R, Sigh S H, Mankbadi R R. Evaluation of boundary conditions for com putational aeroaconstics. J AIAA, 1995, 33:2006-2012
  • 5[5]Hardin J C, Pope D S. A new technique for aerodynamic noise calculation. Proceedings of the DGLRR/AIAA 14th Aeroacoustics Conference, AIAA, Washington D C, 1992, 448-456
  • 6[6]Hardin J C, Pope D S. An aconstic/viscons splitting technique for computational aeroacoustics. Theoretical and Computational Fluid Dynamics, 1994, 6:334-340
  • 7[7]Slimon S A, Soteriou M C, Davis D W. Computational aeroacoustics simulations using the expansion about incompressible flow approach. J AIAA, 1999, 37:409-410
  • 8[8]Ohn A Ekaterinaris. New formulation of Hardin-Pope equations for aeroacoustica. J AIAA, 37,1999
  • 9[9]Philip J M, Lyle N L, Ashok B, Wang Q.A parallel three-dimensional computational aeroacoustica method using nonlinear disturbance equations. J Computational Physics, 1997, 133:56-74
  • 10[11]Tam C K, Webb J C. Dispersion-relation-preserving schemes for computational aeroacoustics. J Computional Physics, 1993,107:262-281

共引文献25

同被引文献28

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部