期刊文献+

叶片水H_2^(18)O富集的研究进展 被引量:15

RECENT ADVANCES IN H_2^(18)O ENRICHMENT IN LEAF WATER
下载PDF
导出
摘要 植物叶片水H218O富集对大气中O2和CO2的18O收支有着重要影响。蒸腾作用使植物叶片水H218O富集,而植物叶片水H218O富集的程度主要受大气水汽δ18O和植物蒸腾水汽δ18O的影响。过去,通过引入稳态假设(蒸腾δ18O等于茎水δ18O)得到Craig-Gordon模型的闭合形式,或将植物整个叶片水δ18O经过Péclet效应校正后得到植物叶片水δ18O的富集程度。然而,在几分钟到几小时的短时间尺度上,植物叶片蒸腾δ18O是变化的,稳态假设是无法满足的。最近成功地实现了对大气水汽δ18O和δD的原位连续观测,观测精度(小时尺度)可达到甚至优于稳定同位素质谱仪的观测精度。在非破坏性条件下,高时间分辨率和连续的大气水汽δ18O和蒸腾δ18O的动态观测,将提高植物叶片水H218O富集的预测能力。该文综述了植物叶片水H218O富集的理论研究的新进展、研究焦点和观测方法所存在的问题,旨在进一步加深理解植物叶片水H218O富集的过程及其机制。 There is considerable interest in the use of atmospheric C^18O^16O and ^18O^16O as a tracer for resolving the role of the terrestrial biosphere in the global carbon cycle. Leaf transpiration will result in the enrichment of the heavy H2^18O isotopes. The δ^18O of leaf water at the evaporating site in the stomatal cavity directly influences the C^18O^16O and ^18O^16O exchanges, instead of that of the bulk leaf water. How to best quantify this enrichment effect remains an active area of research. In the past, a closed form of the Craig-Gordon model was obtained by invoking the steady-state assumption (δ^18O of the transpired water is identical to δ^18O of the xylem water). For the purpose of verification, the predictions of Craig-Gordon model are compared with δ^18O of the bulk leaf water after appropriate corrections for the Peclet effect. On small time scales of minutes to hours, δ^18O of the transpired water is variable in field conditions, implying that the steady state assumption is invalid. Recently, in-situ δ^18O and δ^18D measurement technology has been developed that has potential for improving our understanding of isotopic exchanges between the Earth's surface and the atmosphere. The precision of hourly δ^18O and δ^18D is comparable to the precision of mass spectrometry. It has the potential to improve prediction of δ^18O of leaf water at the evaporating site within the stomatal cavity for the temporal dynamics of atmospheric water vapor δ^18O and the δ^18O of the transpired water, especially if its measurement is made in a non-destructive manner and on a continuous basis. Because the isotopic flux of δ^18O and δ^18D is influ- enced by a similar set of biological and meteorological variables, simultaneous observations of δ^18O and δ^18D will provide additional constraints on the hydrological and ecological processes of the ecosystem. We review the theory and measurement techniques for the enrichment of H2^18O in leaves and focus on the recently developed in-situ measurement technology and its potential for improving our understand- ing of H2^18O enrichment in leaf water and C^18O^16O and ^18O^16O exchanges between the ecosystem and atmosphere.
出处 《植物生态学报》 CAS CSCD 北大核心 2008年第4期961-966,共6页 Chinese Journal of Plant Ecology
基金 国家自然科学基金(30770409和30670384) 中国科学院知识创新工程重要方向项目(KZCX2-YW-432) 中国科学院百人计划"基于样带的草地生态系统碳水循环过程研究" 中国科学院知识创新工程青年人才领域前沿项目
关键词 稳定同位素 Craig-Gordon模型 稳态/非稳态 stable isotope, Craig-Gordon model, steady versus nonsteady state
  • 相关文献

参考文献36

  • 1Cappa CD, Hendricks MB, DePaolo D J, Cohen RC (2003). Isotopic fractionation of water during evaporation. Journal of Geophysical Research, 108, 4525-4534.
  • 2Craig H, Gordon LI (1965). Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Tongiorgi E ed. Proceedings of a Conference on Stable lsotopes in Oceanographic Studies and Paleotemperatures. Spoleto, Italy, 9-130.
  • 3Dawson TE, Pausch RC, Parker HM (1998). The role of hydrogen and oxygen stable isotopes in understanding water movement along the soil-plant-atmospheric continuum. In: Griffiths H ed. Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Bios Scientific Publisher Limited, Oxford, 169-183.
  • 4Dongmann G, Neurnberg HW, Forstel H, Wagener K(1974). On the enrichment of H2^18O in the leaves of transpiring plants. Radiation and Environment Bio- physics, 11, 41-52.
  • 5Ehleringer JR, Roden J, Dawson TE (2000). Assessing ecosystem-level water relations through stable isotope ratio analysis. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methods in Ecosystem Science. Springer, Berlin, 181-198.
  • 6Farquhar GD, Cernusak LA (2005). On the isotopic composition of leaf water in the nonsteady state. Functional Plant Biology, 32, 293-303.
  • 7Farquhar GD, Cernusak LA, Barnes B (2007). Heavy water fractionation during transpiration. Plant Physiology, 143, 11-18.
  • 8Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR (1993). Vegetation effects on the isotope composition of oxygen in the atmospheric CO2. Nature, 363, 439-443.
  • 9Flanagan LB, Comstock JP, Ehleringer JR (1991). Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L. Plant Physiology, 96, 588-596.
  • 10Francey RJ, Tans PP (1987). Latitudinal variation in ^18O of atmospheric CO2. Nature, 327, 495-497.

同被引文献239

引证文献15

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部