期刊文献+

快速凝固/粉末冶金AZ91/SiC_p镁基复合材料的相组成及界面 被引量:13

Phase composition and interface of rapidly solidified/powder metallurgy AZ91/SiC_p Mg-based composite material
下载PDF
导出
摘要 采用双辊雾化法制备快速凝固AZ91镁合金粉末,并用粉末冶金方法制备SiC颗粒增强的镁基复合材料棒材,研究AZ91/SiCp复合材料的微观组织、相组成及增强相与合金基体间的界面结构特点。结果表明:双辊雾化快速凝固AZ91镁合金粉末的相组成为α-Mg固溶体主相和微量细小的T-AlMg2Zn相,尺寸在0.2μm左右;在后续热挤压过程中合金基体中析出大量的球形β-Mg17Al12,尺寸在0.5μm左右,而T-AlMg2Zn相的形貌和尺寸无明显变化;复合材料在加热过程中,增强相SiC颗粒表面的SiO2层与合金基体之间发生界面反应。 Rapidly solidified (RS) AZ91 magnesium alloy powders and the Mg-based composite material reinforced by SiC particles were produced by twin-roller atomization method and powder metallurgy, respectively. The microstructure, phase compositions and interface characterization between Mg matrix and reinforcing particles of AZ91/SiCp composite material were investigated. The results show that the RS AZ91 magnesium alloy powders are composed of α-Mg and a small quantity of fine T-AlMg2Zn with grain size of about 0.2 μm. A large number of global β-Mg17Al12 with grain size of about 0.5 μm are observed after hot extrusion, but the appearance and grain size of T-AlMg2Zn phase is not changed remarkably during hot extrusion. In the heating process of the composite material, the interface reaction occurs between the layers of SiO2 on the surface of SiC particles and Mg matrix.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第7期1185-1190,共6页 The Chinese Journal of Nonferrous Metals
基金 教育部新世纪优秀人才支持计划资助项目(NCET-06-0701) 教育部博士点基金资助项目(20070532087)
关键词 镁基复合材料 快速凝固 粉末冶金 界面 Mg-based composite material rapidly solidified powder metallurgy interface
  • 相关文献

参考文献23

  • 1LIAO Li-hua, ZHANG Xiu-qin, LI Xian-feng. Effect of silicon on damping capacities of pure magnesium and magnesium alloys[J]. Materials Letters, 2007, 61:231-234.
  • 2LIAO Li-hua, ZHANG Xiu-qing, WANG Hao-wei. Influence of Sb on damping capacity and mechanical properties of Mg2Si/Mg-9Al composite materials[J]. Journal of Alloys and Compounds, 2007, 430: 292-296.
  • 3HASSAN S F, GUPTA M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement[J]. Mater Sci Eng A, 2005, 392: 163-168.
  • 4YUAN Guang-yin, LIU Man-ping, DING Wen-jiang, INOUE A. Microstructure and mechanical properties of Mg-/Zn-/Si-based alloys[J]. Mater Sci Eng A, 2003, 357:314-320.
  • 5LU L, THONG K K, GUPTA M. Mg-based composite reinforced by Mg2Si[J]. Composites Science and Technology, 2003, 63: 627-632.
  • 6WANG H Y, JIANG Q C, WANG Y, MA B X, ZHAO F. Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy[J]. Materials Letters, 2004, 58 3509-3513.
  • 7LEE H S, JEON K Y, KIM H Y, HONG S. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science, 2000, 35(24): 6231-6236.
  • 8HU Lian-xi, WANG Er-de. Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting[Y]. Mater Sci Eng A, 2000, 278: 267-271.
  • 9HUH. Grain microstructure evolution of Mg(AM50A)/SiCp metal matrix composites[J]. Scripta Materialia, 1998, 39(8): 1015-1022.
  • 10SCHRODER J, KAINER K U. Characterization of P/M magnesium-SiCp-compsites processed by spray forming. Powder Forging and Extrusion of Composite Powder Mixtures[C]// ALDINGER F. Materials by Powder Technology. PJM193. Oberursel: DGM-Infornation SyeseUschatf, 1993: 739-740.

二级参考文献13

  • 1[1]Kubota K, Mabbuch M, Higashi K. Review-processing and mechanical properties of fine-grained magnesiumalloys[J]. J Mater Sci, 1999, 34(10): 2255-2262.
  • 2[2]Mordike B L, Ebert T. Magnesium properties-applica tion-potential[J]. Mater Sci and Eng A, 2001, 302(1): 37-45.
  • 3[3]Jones H. A perspective on the development of rapid solidification and nonequilibrium processing and its future[J]. Mater Sci and Eng A, 2001, 304- 306:11 - 19.
  • 4[4]Wang R M, Eliezer A, Gutman E. Microstructures and dislocations in the stressed AZ91D magnesium al loys[J]. Mater Sci andEngA, 2002, 344(1 -2): 279 - 287.
  • 5[5]Somekawa H, Watanable H, Mukai T, et al. Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy[J]. Scripta Materialia, 2003, 48(9): 1249 - 1254.
  • 6[6]Tamura Y, Motegi T, Kono N, et al. Effects of minor elements on grain size of Mg-9% Al alloy[J]. Mater Sci Forum, 2000, 350- 351: 199- 204.
  • 7[7]LIU Yi-zhen, WANG Qu-dong, ZENG Xiao-qin, et al. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys[J]. Mater Sci and Eng A, 2000, 278(1 -2): 66-76.
  • 8[8]Vaidya A R, Lewandowski J J. Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy compositites[J]. Mater SciandEngA, 1996, 220(1-2): 85-92.
  • 9[9]Munitz A, Cotler C, Stern A, et al. Mechanical prop erties and microstructure of gas tungsten arc welded magnesium AZ91D plates[J]. Mater Sci and Eng A, 2001, 302(1): 68-73.
  • 10[10]Zhao H, Debroy T. Pore formation during laser beam welding of die-cast magnesium alloy AM60B-mecha nism and remedy[J]. Welding Journal, 2001, 80(8): 204 - 210.

共引文献29

同被引文献198

引证文献13

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部