期刊文献+

基于小波包和神经网络的血细胞识别方法的研究 被引量:2

Blood Cell Recognition Based on Wavelet Packet Analysis and the Neural Network
下载PDF
导出
摘要 根据血细胞信号的特点,提出了一种基于小波包分析和神经网络的血细胞识别方法。该方法首先对血细胞信号进行小波包分解,然后对分解系数进行重构,求得重构信号的能量;然后选取三个能量特征并结合7个时域特征参数构造成特征向量,作为神经网络的输入;最后建立神经网络模型进行训练。实验分析了不同条件下的信号识别情况,结果表明该方法识别效果较好。 In this paper, we present a blood cell recognition method based on wavelet packet analysis and the neural network. The blood cell signals were decomposed, then the discrete wavelet coefficients were reconstructed and energy values were calculated. The energy values together with seven features in time domain were used as the inputs of the BP network. Finally the network was established and trained. The accuracies of recognition on different conditions are discussed too. The experimental results show that the proposed method has a high accuracy of recognition.
作者 贾丹丹 李宏
出处 《中国医疗器械杂志》 CAS 2008年第4期239-241,252,共4页 Chinese Journal of Medical Instrumentation
基金 国家自然科学基金项目(60773071) 国家自然科学基金项目(10675065) 浙江省教育厅资助项目(20061669)
关键词 血细胞识别 神经网络 小波包分析 blood cell recognition, neural network, wavelet packet analysis
  • 相关文献

参考文献6

  • 1R Davies, R Karuhn, et al. Studies on the Coulter Counter part Ⅱ. Investigations into the effect of flow direction and angle of entry of a particle on both particle volume and pulse shape [J].Powder Technology, 1975, 12(2):157-166
  • 2Fujimoto K. Principles of Measurement in Hematology Analyzers Manufactured by Sysmex Corporation[J]. Sysmex Journal International, 1999, 9(1): 31-44
  • 3黄民双,张春光.基于Coulter原理的微细颗粒探测新方法[J].仪器仪表学报,2001,22(5):483-485. 被引量:7
  • 4R. R. Coifman, M. V. Wickerhauser. Entropy-based algorithms for best basis selection[J].IEEE. Trans. Inform, 1992, 38(2):713 -718
  • 5焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1995..
  • 6Vijander Singh, Indra Gupta, H.O.Gupta. ANN-based estimator for distillation using Levenberg-Marquardt approach[J]. Engineering Applications of Artificial Intelligence,2007, 20(2):249-259

二级参考文献1

共引文献67

同被引文献18

  • 1黄天立,楼梦麟.基于HHT的非线性结构系统识别研究[J].地震工程与工程振动,2006,26(3):80-83. 被引量:19
  • 2Leu J G.On indexing the periodicity of image textures[J].Image and Vision Computing,2001,19(13):987-1000.
  • 3Ang Y H,Li Z,Ong S H.Image retrieval based on multidimensional feature properties[J].Proceedings of SPIE,1995,2420:47-57.
  • 4Loncaric S,Dhawan A P.Near-optimal MST-based shape description using genetic algorithm[J].Pattern Recognition,1995,(28)4:571-579.
  • 5Pelikan M,et al.Linkage problem,distribution estimation,and Bayesian networks[J].Evolutionary Computation,2000,8(3):311-340.
  • 6Paragios N,et al.On the representation of shapes using implicit functions[J].Statistics and Analysis of Shapes,2006:167-199.
  • 7Chan T F,Vese L A.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
  • 8Haralick R M,Shangmugam I,Dinstein K.Textural feature for image classification[J].IEEE Transactions on System Man and Cybernetics,1973,SMC-3(6):610-621.
  • 9王彬,孙蕾.基于支持向量机的肿瘤形状特征分类[J].计算机工程,2007,33(17):46-48. 被引量:1
  • 10管燕,李存华,仲兆满.一种基于综合特征的鞋底图像识别方法[J].西南民族大学学报(自然科学版),2007,33(5):1189-1194. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部