摘要
研究一类带附加应力扩散项的Johnson-Segalman模型,通过不变流形分析方法以及同宿轨与异宿轨的研究,刻画了该模型的相空间结构,并证明了一类具有三井位势的Hamilton系统同宿轨和异宿轨的存在性.
In this paper, we considered a class of Johnson-Segalman (JS) models involving reaction diffusion.The model is prsented as nonlinear reaction diffusion equations. By virtue of invariant manifolds and study of homoclinic and heteroclinic orbits, we described the structure of phase plane of JS model and gave enlighten global results on homoclinic and heteroclinic bifurcation in a Hamiltonian system with 3-wells potential.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2008年第4期613-617,共5页
Journal of Jilin University:Science Edition
基金
国家863高技术研究发展计划项目基金(批准号:2007AA03Z218)