摘要
为消除图像中的脉冲噪声,提出一种窗口自适应开关中值滤波方法.利用BP神经网络将图像中的每个像素点分类为信号点或噪声点,再采用改进的中值滤波器对检测后的图像进行滤波处理.根据噪声检测结果,滤波器自适应调整窗口大小并选择性取样,逐点滤波消除图像中的噪声.该方法在抑制脉冲噪声、保护图像细节方面均优于以往基于中值滤波的方法,即使在图像遭受70%噪声污染的极端情况下,仍能得到很好恢复.
In order to denoise impulse noises in images, an adaptive window switching median filtering method is proposed in this paper. First, each pixel is classified as signal or noisy point by the BP-net. Next, the image is filtered by an improved median filter. According to the result of noise detection, the filter can adjust adaptively window's width and sample choicely, each noisy point in image is denoised by filtering. In terms of suppressing impulse noise and preserving image details, the proposed method is better than that, based on median filter. Even in the extreme case of 70% noise corruption, noisy images can be effectively recovered.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2008年第4期697-703,共7页
Journal of Jilin University:Science Edition
基金
国家863高技术研究发展计划项目基金(批准号:2003AA1Z2141)
关键词
图像去噪
脉冲噪声检测
自适应开关中值滤波
image denoising
impulse noise detection
adaptive switching median filters