摘要
考虑SL问题-y^n+qy=λy,x∈[0,1],边界条件为y(0)=0,(y′(1))/(y(1))=aλ+b,我们得到当q(?)0,a>0,b<1时,上述问题的特征值全大于零.
We consider Sturm- Liouville problem on the interval [0,1] of the form - y" + qy = λy, x ∈[0,1 ], with boundary conditions y(0) =0, γ′(1)/γ(1)=aλ+b. We obtain that all the eigenvalues of the above problem arepositive real numbers when q≥0,a〉0,b〈1.
出处
《泰山学院学报》
2008年第3期21-22,共2页
Journal of Taishan University