期刊文献+

wF(p,r,q)类算子的局部谱性质 被引量:1

The Local Spectral Property of Class wF(p,r,q)
下载PDF
导出
摘要 对wF(p,r,q)类算子的局部谱理论进行了比较系统的研究,得出如下结果:wF(p,r,q)类算子是次标量算子;wF(p,r,q)类算子是次可分解算子;wF(p,r,q)类算子的局部谱子空间与极大代数谱子空间相等;wF(p,r,q)类算子具有有限升等等. By systematical research on local spectral theory of class ωF (p, r,q) operators,a series of results have been obtained., such as class ωF (p, r, q) operators is subscalar operator, class ωF (p, r,q) operators is subdecomposable, the local spectral subspace of class ωF(p,r,q) operators is equal to the maximal algebraic spectral subspacd of class ωF(p,r,q) operators, class ωF (p,r,q) operators has finite ascent, and so on.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期7-9,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 教育部科技司重点项目(208081) 河南省教育厅自然科学基金(2008B110016)
关键词 ωF(p r q)类 次标量 次可分解 有限升 classωF(p,r,q) subscalar subdecomposable finite ascent
  • 相关文献

参考文献8

  • 1Yang C, Yuan J. Spectrum of class wF (p, r,q) operators for p + r ≤ 1 and q ≥ 1 [J]. Acta Sci Math(Szeged), 2005,71 : 767-779.
  • 2Kimura F. Analysis of non-normal operators via Aluthge transformation[J]. Integr Equat Oper Th, 2004,50:375-384.
  • 3Laursen K B. Operators with finite ascent[J]. Pacific J Math,1992,152:323-336.
  • 4Lin Chen, Ruan Yingbin, Yan Zikun. w-Hyponormal Operators are Subsealar[J]. Integr Equat Oper Th, 2004,50 : 165-168.
  • 5Eschmeier J, Putinar M. Bishop's condition (β) and rich extensions of linear operators[J]. Indiana Univ Math J, 1988,37 : 325-348.
  • 6Eschmeier J. A decomposable Hilbert space operator which is not strongly decomposable[J]. Integr Equat Oper Th,1988,11:161-172.
  • 7Furuta T. Invitation to linear operators-from matrices to bounded linear operators on a Hilbert space[M]. London: Taylor & Francis, 2001 : 123-124.
  • 8Miller T L, Miller V G, Neumann M M. Spectral subspaees of subsealar and related operators[J]. Proc Amer Math Soc, 2003,132:1483-1493.

同被引文献9

  • 1Heinz E. Beitrage zur Storungsteorie der Spektralzerlegung[J]. Math Ann, 1951,123:415-438.
  • 2Kubo F, Ando T. Means of positive linear operators[J]. Math Ann,1980,264:205-224.
  • 3Fujii M. Furuta's inequality and its mean theoretic approach[J]. Operator Theory, 1990,23 : 67- 72.
  • 4Kamei E. A satellite to Furuta's inecluality[J]. Math Japort,1988,33:883-886.
  • 5Ando T, Hiai F. Log majorization and complementary Golden-Thompson type inequality[J]. Linear Algebra Appl, 1994,197:113-131.
  • 6Fututa T. A≥B≥O assures (B^rA^pB^r)1/ q ≥B^p+r/q for r≥0,p≥0,q≥1 with (1+2r)q≥p+2r [J]. Proc Amer Math Soc,1987,101:85-88.
  • 7Fujii M, Kamei E. Ando-Hiai inequality and Furuta inequality[J]. Linear Algebra Appl,2006,416:541-545.
  • 8Furuta T. Extension of the Furuta inequality and Ando-Hiai log-majorization[J]. Linear Algebra Appl, 1995,219:139-155.
  • 9杨长森,丁艳风.一个从A算子类到亚正常算子类算子的性质[J].河南师范大学学报(自然科学版),2007,35(3):216-216. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部