摘要
对wF(p,r,q)类算子的局部谱理论进行了比较系统的研究,得出如下结果:wF(p,r,q)类算子是次标量算子;wF(p,r,q)类算子是次可分解算子;wF(p,r,q)类算子的局部谱子空间与极大代数谱子空间相等;wF(p,r,q)类算子具有有限升等等.
By systematical research on local spectral theory of class ωF (p, r,q) operators,a series of results have been obtained., such as class ωF (p, r, q) operators is subscalar operator, class ωF (p, r,q) operators is subdecomposable, the local spectral subspace of class ωF(p,r,q) operators is equal to the maximal algebraic spectral subspacd of class ωF(p,r,q) operators, class ωF (p,r,q) operators has finite ascent, and so on.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期7-9,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
教育部科技司重点项目(208081)
河南省教育厅自然科学基金(2008B110016)