期刊文献+

关于有限内循环群边传递的图

Graphs on which an Inner-cyclic Group Acts Edge-transitively
下载PDF
导出
摘要 所指的图是有限的、单的、无向的且无孤立点,p,q,t是素数,m,r是正整数且满足r■1≡rq(modp).获得了关于有限内循环群边传递的图的完全分类,结果为:设Γ是一个图,G是一个阶为pqm或t2或8的内循环群,且G≤Aut(Γ),则Γ是G-边传递的当且仅当Γ同构于下列图之一:(1)qm-eCpqe,0≤e<m;(2)pqm-eCqe,1≤e<m且(q,e)≠(2,1);(3)2m-1pK1,1,q=2,m>1;(4)pCqm,(q,m)≠(2,1);(5)pK1,1,m=1;(6)Cay(Zp,C),C={±rμ|μ∈Zq},m=1;(7)B(Zp,C),其中C={1-rj|j∈Zq},m=1;(8)Kp,1,m=1;(9)pKqm,1;(10)Kpqm,1;(11)Kqm,p;(12)pqeK1,qm-e,1≤e≤m;(13)qeK1,pqm-e,1≤e≤m;(14)qeKqm-e,p,1≤e<m;(15)tCt,t>2;(16)2K1,1,t=2;(17)t2K1,1;(18)tKt,1;(19)Kt,t;(20)Kt2,1;(21)2C4;(22)8K1,1;(23)2K4,1;(24)4K2,1;(25)K8,1. All graphs are finite simple undirected ones with no isolated vertices in this paper, p,q and t are prime num- bers, m and r are positive integers,and r absolotely uneqvalto 1 ≡ r^q (rood p) . The classification of graphs is completed,on which an inner-cyclic group acts edge-transitively. The main result is following: Let P be a graph, G be an inner-cyclic group of order pq^m or t^2 or 8, and G ≤ Aut(Г) . Then G acts edge-transitively on Г if and only if Г is one of the following graphs: ( 1 ) q^m-eCpq^e,0≤ e ≤ m;(2)pq^m-eCq^e,1≤e〈m且(q,e)≠(2,1);(3)2^m-1pK1,1,q=2,m〉1;(4)pCq^m,(q,m)≠(2,1);(5)pK1,1,m=1;(6)Cay(Zp,C),C={±∥r^p|μ∈Zq},m=1;(7)B(Zp,C),where C={1-r^j|j∈Zq},m=1;(8)Kq^m-e,m=1;(9)pKq^m,1;(10)Kpq^m,1;(11)Kq^m,p;(12)pq^eK1,q^m-e,1≤e≤m;(13)q^eK1,pq^m-e,1≤e≤m;(14)q^eKq^m-e,p,1≤e〈m;(15)tCr,t〉2;(16)2K1,1,t=2;(17)t^2K1,1;(18)tKt,1;(19)Kt,t(20)Kt^2,1;(21)2C4;(22)8K1,1;(23)2K4,1;(24)4K2,1;(25)K8,1.
作者 陈尚弟 刘洁
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期10-13,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(60776810) 中国民航大学科研基金(KYS10)
关键词 内循环群 边传递 graph inner-cyclic group edge-transitive
  • 相关文献

参考文献7

  • 1Sander R S. Graphs on which a dihedral group acts edge transitively[J]. Discrete Mathmatics, 1993,118:225-232.
  • 2陈尚弟.有循环极大子群的素数幂阶群的作用是边传递的图(Ⅰ)[J].系统科学与数学,2005,25(3):331-339. 被引量:8
  • 3路在平,徐明曜.三度边正则图的三个无限族[J].数学进展,2004,33(1):115-120. 被引量:5
  • 4Chris Godsil, Gordon Royle. Algebraic Graph Theory[M]. New York: Springer-Verlag,2000:8 10.
  • 5Li C H, Lu Z P, Marusic D, On primitive permutation groups with small suborbits and their orbital graphs[J]. J Algebra, 2004,279 : 749-770.
  • 6Du S F,Xu M Y. A classification of semisymmetric graphs of order 2pq [J]. Comm Algebra,20013,28(6):2685-2715.
  • 7Dixon D,Mortimer B. Permutation Group[M]. New York: Springer-Verlag, 1997:18.

二级参考文献8

  • 1Wielandt H. Finite Permutation Group. New York: Academic Preess, 1964.
  • 2Harary F. Graph Theory. Addiso-Wesley, Reading, Mass, 1969.
  • 3Biggs N. Algebraic Graph Theory. Combridge Tracts in Math. London: Combridge Univ. Press,1974.
  • 4Ivanov A A. Distance-transitive representation of the symmetric group. J. Combin Theory, ser. B,1986, 41: 255-274.
  • 5Sander R S. Graphs on which a dihedral group acts edge-tansitively. Discrete Mathmatics, 1993,118: 225-318.
  • 6Robinson J S. A Couse in the Theory of Group. New York: Spring-Verlag, 1982, 136-137.
  • 7Yap H P. Some Topics in Graph Theory. London Math. Suc. Lecture Note, Series 108. London:Combridge Univ. Press, 1986, 90 .
  • 8Dixon John D, Mortimer Brian. Permutation Group. New York: Springer-Verlag, 1997, 10.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部