期刊文献+

一类含有时变时滞的离散系统的鲁棒指数稳定性 被引量:1

Robust Exponential Stability for a Class of Discrete Systems with Time-varying Delay
下载PDF
导出
摘要 基于Lyapunov稳定性理论和自由权矩阵方法,给出了一类含有时变时滞和非线性扰动的离散时间系统的鲁棒指数稳定准则.数值例子说明所得结果的有效性和可行性. Based on the Lyapunov stability theory and free weight matrix method,the robustly exponential stability criterion is presented for a class of discrete-time systems with time-varying delay and nonlinear perturbations. Numerical example is given to show the effectiveness and feasibility of the obtained result.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期28-30,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 河南科技学院自然科学研究计划项目(6053)
关键词 离散系统 指数稳定 时变时滞 线性矩阵不等式 discrete systems exponential stability time-varying delay linear matrix inequality
  • 相关文献

参考文献5

  • 1Wu M,He Y,She Y H,et al. Delay-dependent criteria for robust stability of time-varying delay system[J]. Automatica,2004,40(8):1435 - 1439.
  • 2Han Q L. Robust stability for a class of linear systems with time-varying delay and nonlinear perturbations[J]. Comput Math Appl,2004, 47(8) : 1201-1209.
  • 3Gao H, Lam J, Wang C, et al. Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay[J]. IEE Proc-control theory appl,2004,151(6) :691-698.
  • 4Liu X G, Marin R R, Wu M, et al. Delay-dependent robust stabilisation of discrete-time systems with time-varying delay[J]. IEE Proc-control theory appl, 2006,153 (6) : 689 - 702.
  • 5Boukas E K. State feedback stabilization of nonlinear discrete-time systems with time-varying time delay [J]. Nonlin Anal, 2007,66 (6) : 1341-1350.

同被引文献39

  • 1王路平,刘晓华.基于LMI的时滞细胞神经网络的指数稳定性分析[J].河南师范大学学报(自然科学版),2007,35(2):39-41. 被引量:2
  • 2Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 3Shawe-Taylor J,Bartlett P,Williamson R,et al.Structural risk minimization over data-dependent hierarchies[J].IEEE Transactions on Information Theory,1998,44(5):1926-1940.
  • 4Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20:273-297.
  • 5Arun Kumar M,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert Systems with Applications,2009,36(4):7535-7543.
  • 6Wang L,Zhu J,Zou H.The doubly regularized support vector machine[J].Statistica Sinica,2006,16:589-615.
  • 7Wang L,Zhu J,Zou H.Hybrid huberized support vector machines for microarray classification and gene selection[J].Bioinformatics,2008,24(3):412-419.
  • 8Zhu J,Rosset S,Hastie T,et al.1-norm support vector machines[J].Advances in Neural Information Processing Systems,2004,16:49-56.
  • 9Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,Series B,1996,58:267-288.
  • 10Segal M,Dahlquist K,Conklin B.Regression approaches for microarray data analysis[J].Journal of Computational Biology,2003,10(6):961-980.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部