期刊文献+

极大单调算子的一个投影近似邻近点算法 被引量:1

A Projection Approximate Proximal Algorithm for Maximal Monotone Operators
下载PDF
导出
摘要 在Hilbert空间中给出求极大单调算子零点的近似邻近点算法,给出的误差准则比现有的算法弱,并证明该算法生成的序列{xk}弱收敛到算子的零点。应用该算法求解单调变分不等式,得到求解单调变分不等式的近似邻近点算法。 This paper presents a approximate proximal algorithm finding the zero of a maximal monotone operator in Hilbert space, whose error criterion is weaker than that in the literatures. It's proved that the sequence {x^k} generated by this algorithm converges weakly to the zero point of the maximal monotome operator. It's applied to solve the variational inequality problem involving a monotone operator, and a new approximate proximal algorithm is established.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2008年第2期37-40,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10761002) 广西科学基金资助项目(0832101)
关键词 极大单调算子 近似邻近点算法 变分不等式 maximal monotone operator approximate proximal algorithm variational inequality
  • 相关文献

参考文献11

  • 1何炳生,杨振华,廖立志.极大单调算子的一个新的近似邻近点算法[J].中国科学(A辑),2002,32(11):1026-1032. 被引量:13
  • 2王治华.关于单调变分不等式的不精确邻近点算法的收敛性分析[J].高等学校计算数学学报,2003,25(4):336-343. 被引量:8
  • 3ROCKAFELLAR R T. Monotone operators and the proximal point algorithms[J]. SIAM J Contr Optim, 1976, 14 (5) :877-898.
  • 4谭丽,范江华.带紧扰动的增生算子的特征值问题[J].广西师范大学学报(自然科学版),2004,22(2):37-40. 被引量:2
  • 5FAN Jiang-hua. A Mann type iterative scheme for variational inequalities in noncompact subsets of Banach spaces[J]. J Math Anal Appl, 2008,337 (2) : 1041-1047.
  • 6LI Min,YUAN Xiao-Ming. An APPA-based descent method with optimal step-sizes for monotone variational inequalities[J], Euro J of Operat Res, 2008,186(2):486-495.
  • 7LI Min. A new generalized APPA for maximal monotone operators[J]. Appl Math Lett, 2008,21(2):181-186.
  • 8VERMA R U. Proximal point algorithms and generalized nonlinear variational problems[J]. Appl Math and Comp, 2007,187:535-543.
  • 9BURACHIK R S,SCHEIMBERG S,SVAITER B F. Robustness of the hybrid extragradient proximal-point algorithm[J]. J Optim Theory Appl, 2001,111:117-136.
  • 10HAN De-ren,HE Bing-sheng, A new accuracy criterion for approximate proximal point algorithms[J]. J Math Anal Appl, 2001,263 (2) : 343-354.

二级参考文献32

  • 1Guan Z,Kartsatos A G. On the eigenvalue problem for perturbation of nonlinear accretive and monotone operators in Banach spaces[J]. Nonl Anal, 1996,27 (2): 125-141.
  • 2Fitzpatrick P M,Petryshyn W V. Positive eigenvalues for nonlinear multivalued noneompact operators with applications to differential operators[J]. J Diff Eqns, 1976,22: 428-441.
  • 3Browder F E. Nonlinear mappings of nonexpansive and accretive type in Banach spaces[J]. Bull Amer Math Soc,1967,73:875-882.
  • 4Kato T. Nonlinear semigroups and evolution equations[J].Math Soc Japan,1967,18(19):508-520.
  • 5Barbu V. Nonlinear semigroups and differential equations in Banaeh spaces[M]. Leyden :Noordhoff International Publishing, 1976.
  • 6Morosanu G. Nonlinear evolution equations[M]. Bucharest :Edirura Academici,1988.
  • 7Browder F E. Nonlinear operators and nonlinear equations of evolution in Banach spaces[A]. Proceedings of symposia in pune mathematics [C ]. Providence, RI : American Mathematical Society, 1976.1- 308.
  • 8[1]Brezis H. Operateurs Maximaux Monotone et Semi-Groups de Contractions dans les Espaces de Hilbert.Amsterdam: North-Holland, 1973
  • 9[2]Burachik R S, Iusem A N, Svaiter B F. Enlargement of monotone operators with applications to variational inequalities. Set-Valued Analysis, 1997, 5:159~180
  • 10[3]Rockafellar R T. Monotone operators and the proximal point algorithm SIAM Journal on Control and Optimization, 1976, 14:877~898

共引文献15

同被引文献17

  • 1韩继业,修乃华,戚厚铎.非线性互补理论与算法[M].上海:上海科学技术出版社,2003.
  • 2Goldstein A A. Convex programming in Hilbert space[ J]. Bull Am Math Soc, 1964,70:709.
  • 3Levitin E S, Polyak B T, Constrained minimization problems[J]. USSR Comput Math Math Phys,1966,6:1.
  • 4Korpelevich G M. The extragradient method for finding saddle points and other problems[ J]. Matecon, 1976,12:747.
  • 5He B S, Yuan X M, Zhang J Z. Comparison of two kinds of prediction - correction methodsfor monotone variational inequalities[J]. Comput Optim Appl,2004,27:247 - 267.
  • 6Yan X H, Han D R, Sun W Y. A serf - adaptive projection method with improved step - size for solving variational inequalities[J]. Comput Math Appl,2008,55 (4) :819 - 832.
  • 7Xu M H, Yuan X M, Huang Q L. An improved general extra - gradient method with refined step size for nonlinear monotone vari- ational inequalities[J]. J Glob Optim ,2007 ,39 : 155 - 169.
  • 8Abroad K, Kazmi K R, Rehman N. Fixed -point technique for implicit comlementarity problem in Hilberet lattice[ J ]. J Optim Theo Appl, 1997,93:72 - 97.
  • 9Noor M A. Projection iterative methods for extended general variational inequalities [ J ]. J Appl Math Comput,2010,32:83 -95.
  • 10Farouq N El. Pseudomonotone variational inequalities : Convergence of the auxiliary problem method [ J ]. J Optim Theo Appl, 2001,111 (2) :305 -326.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部