期刊文献+

粒子群优化的广义T-S模糊模型参数学习方法 被引量:2

Parameters Learning Approach for Generalized Takagi-Sugeno Fuzzy Model Using Particle Swarm Optimization
下载PDF
导出
摘要 提出了一种基于粒子群优化的广义T-S模糊模型参数学习方法。该方法用离散二进制微粒位置表示模型的结构参数,用普通微粒位置表示模型规则中模糊集隶属函数的参数;这两种微粒位置联合体构成一个模型完整的前件参数集。每一学习循环分两步,前一步用粒子群进化迭代调整所有前件参数,后一步用正交最小二乘法估计后件参数。该方法不需任何先验知识,运算量小,能产生紧凑的模糊模型。非线性动态系统模糊建模的数字仿真说明了该方法的有效性。 A parameters learning approach for generalized takagi-sugeno (T-S) fuzzy model is proposed in this paper on the base of analysis of generalized T-S Fuzzy model. The structural parameters of the approach are denoted by the position of discrete binary particles and the parameters of membership function in the approach are denoted by the position of ordinary particles. The combination of positions of the two kind of particles composes complete premise parameters set of a model. A learning cycle consists of two phases: In'st, all reasoning parameters are adjusted by evolutionary iteration of particle swarm; second, all consequent parameters are estimated through orthogonal least square error algorithm. The method requests scarcely any previous information about objects, take less calculating time, and is able to obtain compact fuzzy model. The simulation result shows the validity of the approach.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2008年第4期569-573,共5页 Journal of University of Electronic Science and Technology of China
基金 国家星火计划项目(2003EA770007) 湖南省杰出青年基金(01JZY2101)
关键词 模糊建模 广义T-S模糊模型 正交最小二乘法 粒子群优化 fuzzy modeling generalized takagi-sugeno (T-S) fuzzy model orthogonal least Square error particle swarm optimization (PSO)
  • 相关文献

参考文献10

  • 1TAKAGI T, SUGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans on Systems, Man and Cybernetics, 1985, 15 (1): 116-132.
  • 2李合生,毛剑琴,代冀阳.基于遗传算法的广义Takagi-Sugeno模糊逻辑系统最优参数辨识[J].自动化学报,2002,28(4):581-586. 被引量:10
  • 3陈国初,俞金寿.微粒群优化算法[J].信息与控制,2005,34(3):318-324. 被引量:59
  • 4KENNEDY J, EBERHART R C, Particle swarm optimization[C]//Proceeding of 1995 IEEE International Conference on Neural Networks. New York, NY, USA: IEEE, 1995.
  • 5EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. New York, NY, USA: IEEE, 1995.
  • 6KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C]//Proceedings of the 1997 International Conference on Systems, Man, and Cybernetics. NewYork, NY, USA: IEEE, 1997.
  • 7VAN DEN BERGH E An analysis of particle swarm optimizers[D]. Pretoria, South Africa: Department of Computer Science, University of Pretoria, 2002.
  • 8KENNEDY J, SPEARS W N. Matching algorithm to problem: an experimental test of the particle swarm and some genetic algorithms on multimodal problem generator[C]//Proceedings of the International Conference on Evolutionary Computation. Anchorage, Alaska, USA: [s.n.], 1998.
  • 9RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient[J]. IEEE Trans Evol Comput, 2004, 8(3): 240-255.
  • 10顾启泰.正交最小二乘算法及其应用[J].清华大学学报(自然科学版),1996,36(3):106-112. 被引量:8

二级参考文献40

  • 1顾启泰,清华大学学报,1989年,29卷,1期,29页
  • 2Abido M A. Optimal design of power-system stabilizer using particle swarm optimization [ J]. IEEE Transactions on Energy Conversion, 2002,17(3): 406-413.
  • 3Fourie P C, Groenwold A A. The particle swarm optimization algorithm in size and shape optimization [J]. Structure Multidisciplinary Optimization, 2002, 23(4) : 259 -267.
  • 4Coello C A C, et al. Use of particle swarm optimization to design combinational logic circuits [ A]. Proceedings of the 5th International Conference on Evolvable Systems [ C]. Germany:Springer-Verlag,2003. 398 - 409.
  • 5Brandstatter B, Baumgartner U. Particle swarm optimization -mass-spring system analogon [J].IEEE Transactions on Magnetics, 2002, 38(2) :997 - 1000.
  • 6Dennis G, Yahya R S. Particle swarm optimization for reconfigurable phase differentiated array design [J]. Microwave and Optical Technology Letters, 2003, 38(3) : 168-175.
  • 7Cockshott A R, Hartman B E. lmprovlng the fermentation medium for Echinocandin B production - part Il : particle swarm optimization [J]. Process Biochemistry, 2001,36(7): 661 -669.
  • 8Claudia O, et al. The use of particle swarm optimization for dynamical analysis in chemical processes [ J ]. Computers and Chemical Engineering, 2002,26(12):1783 -1793.
  • 9Lu W Z, Fan H Y, Lo S M. Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong [ J]. Neurocomputing, 2003, 51: 387-400.
  • 10Yoshida H, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Transactions of the Institute of Electrical Engineers of Japan, 1999,119 - B(12) :1462 - 1469.

共引文献73

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部