期刊文献+

时标下指数函数的推广 被引量:2

Generalization of exponential function on time scales
下载PDF
导出
摘要 从时标意义下指数函数的显示表达式出发,将指数函数的定义从p为右稠连续函数推广到p为绝对可积函数,并证明推广后的指数函数是右稠连续的。 The exponential function on time scales wherepis rd-continuous is extened topwhich is only absolute integral from the explicit formula of exponential function. Then we proved the extened exponential function is rd-continuous.
机构地区 贵州大学理学院
出处 《贵州大学学报(自然科学版)》 2008年第4期334-338,共5页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金(10661004)
关键词 时间标度 右稠连续 Lebesgue-△可积 指数函数 time scales rd-continuous Lebesgue- Aintegral exponential function
  • 相关文献

参考文献7

  • 1S. Hilger, Ein Ma-kettenkalkul mit Anwendung auf Zentrumsmannig faltigkeiten, PhD thesis Universitat Wurzburg, 1988.
  • 2M. Bohner,A. Peterson, First and second order linear dynamic equations on Time Scales, J. Differ. Eqns. Appl. 7(2001 )767 -792.
  • 3Ravi Agarwai, Martin Bohner, Donal O' Regan, Allan Peterson, Dynamic equations on Time Scales: a survey, Journal of Computational and Applied Mathematics, 141 (2002) 1 - 26.
  • 4M. Bohner and A. Peterson, Dynamic Equations on Time Scales : An Introduction with Applications, Birkhauser, Boston, 2001.
  • 5Alberto Cabada, Dolores R. Vivero, Expression of the Lebesgue A -integral on Time Scales as a usual Lebesgue integral : application to the calculus of Δ-antiderivatives, Mathematical and Computer Modelling, 43 ( 2006 ) 194 - 207.
  • 6Bryan P. Rynne, L^2 spaces and boundary value problems on time-scales, J. Math. Anal. Appl, 328 (2007)1217 - 1236.
  • 7Andreas Ruffing, Mortiz Simon, Corresponding Banach spaces on Time Scales, Journal of Comptational and Applied Mathematics, 179 (2005) 313 - 326.

同被引文献14

  • 1S Hilger.Ein Maˉkettenkalkul mit Anwendung auf Zentrumsmannig faltigkeiten[D].Germany:hD theis University Wurzburg,1988.
  • 2Hongbo Liu,X Xiang.A class of the first order impulsive dynamic equations on time scales[J].Nonlinear Analysis,2008(69):2803-2811.
  • 3M Bohner.Calaulus of variations on time scales[J].Dynamic Systems and Applications,2004(13):339-349.
  • 4Roman Hilscher,Vera Zeidan.Calculus of variations on time scales:weak local piecewise Crd^1 solutions with variable endpoints[J].JMAA,2004(289):143-166.
  • 5Yurong Gong,X Xiang.A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales[J].JIMO,2009(5):1-10.
  • 6G S Guseinov.Integration on time scales[J].JMAA,2003(285):107-127.
  • 7Shouchuan Hu,Nikolas S.Papageoriou,Handbook of Multivalued Analysis[M].Dordrecht:Kluwer Academic Publishers,1997.
  • 8Agarwai R, Bohner M, O' Regan D, Peterson A, 2002. Dynam- ic equations on time scales a survey~J]. Computational and Applied Mathematics, 141 :1-26.
  • 9Bohner M, Peterson A, 2001. First and second order linear dynamic equations on time scales [ J ]. Difference Equations and Application, 7:767-792.
  • 10Bohner M, Peterson A, 2001. Dynamic Equation on Time Scales. An Introduction with Applications, Birkhauser, Boston[ M ].

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部