摘要
对于轴对称零件的突缘变形区,运用能量法和二维折线式变位函数,计及材料常数n,r值和板厚变化,揭示了拉深中最小无皱压边力的变化规律。指出其最大值明显滞后于突缘变形最大径向拉力的发生时刻,突破了两者基本上同时发生的传统结论。计算结果与实验数据符合良好。
Based on a two-dimensional broken-line model of an annular flange and the energy method,the law of minimum wrinkless blankholder force in deep-drawing is discovered,considering the variations in material constants , and thickness.It is pointed out that the maximum value of minimum wrinkless blankholder force,arrives much later than the moment when the maximum tension of the flange in radial direction is reached,which breaks through the conventional conclusion that they take place at about the same time.The calculated results are in good accordance with the experimental data.
出处
《塑性工程学报》
CAS
CSCD
1997年第4期30-37,共8页
Journal of Plasticity Engineering
基金
航空科学基金
关键词
压边力
拉深
能量法
轴对称零件
金属
blankholder force,wrinkling,deep-drawing,energy method