期刊文献+

目标跟踪与定位中的视觉标定算法研究 被引量:7

Vision calibration algorithm for object tracking and positioning
下载PDF
导出
摘要 目标跟踪与定位中的一个重要步骤就是摄像机标定,其目的是估计摄像机的外部和内部参数。在严格的几何约束关系之上建立准确的数学模型,提出一种快速得到摄像机中心的方法,然后通过合理的求解次序获得其他摄像机参数,保证了标定参数的精度。利用计算出来的标定参数校正失真图像中的各个像素位置以重新得到像素间原来的空间关系,从而产生精确的不失真图像,并且利用摄像机标定参数对标定模板上的点进行位置计算后,再和实际位置比较进行检验。图像的校正效果实验以及精度验算的结果表明:提出的算法得到了准确可靠的标定参数,和其他算法相比有效提高了精度,能够满足运动跟踪时目标特征位置估计的精度要求。 An important task for object tracking and positioning is camera calibration, whose purpose is to estimate the internal and external parameters of cameras. A exact mathematical model, which could provide a fast method to obtain the camera centre, was established based on a strict geometric constraint relationship. The other parameters of the camera was acquired in a resonable resolving sequence to guarantee the parameter accuracy of the camera. The pixel position in a distorted image is corrected based on the computed calibration parameters to recover the original space relationship between pixels, then the accurate and undistorted images are obtain. After the position of the spot on the calibration template is computed based on camera calibration parameters, the computed spot position is compared with its real position for verifing its accuracy. The experiments to check the image correction effect and accuracy indicates that the calibration parameters obtained by the algorithm are accrate and reliable, the accuracy is effectively improved, and the accuracy requirement for the position estimation of the target in moving-target tracking can be satisfied.
出处 《应用光学》 CAS CSCD 2008年第4期481-487,共7页 Journal of Applied Optics
基金 国家863计划(2006AA04Z222) 国家自然科学基金(60475023) 博士点基金(20050698032)
关键词 视觉标定算法 运动目标跟踪 摄像机标定 失真图像校正 visual calibration algorithm moving-target tracking camera calibration correction of distorted image
  • 相关文献

参考文献13

  • 1KING F G, PUSKORIUS G V, YUAN F. Vision guided robots for automated assembly[J]. IEEE Int. Conf. Robotics and Automation, 1988 (3): 1611-1616.
  • 2XU Jian, FANG Z P, MALCOLM A A,et al. A robust close-range photogrammetric system for industrial metrology [J]. International Conference on Control, Automation, Robotics and Vision, 2002,1(2-5):114-119.
  • 3WILCZKOWIAK M, BOYER E, STURM P. Camera calibration and 3D reconstruction from single images using parallelepipeds[J]. IEEE International Conference on Computer Vision, 2001, 1 (7-14): 142-148.
  • 4TANG Hua-bin, WANG Lei, SUN Zeng-qi. Accurate and stable vision in robot soccer [J]. International Conference on Control, Automation, Robotics and Vision, 2004,3(6-9) :2314-2319.
  • 5TECHMER A. Real time motion analysis for monitoring the rear and lateral road [C]// IEEE Intelligent Vehicles Symposium. Pama Italy: Piscataway NJ ,ETATS-UNIS, 2004 : 704-709.
  • 6PORIKLI F, DIVAKARAN A. Multi-camera calibration, object tracking and query generation[J]. International Conference on Multimedia and Expo, 2003,1(6-9): 1-653-6.
  • 7郝继平,杜成功,黄平华.红外标定理论计算与应用[J].应用光学,2004,25(2):36-39. 被引量:6
  • 8JONG-SOO L, YU-HO J. CCD camera calibrations and projection error analysis [J]. IEEE Int. Conf.Science and Technology, 2000(2) .. 50-55.
  • 9TSAI R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J]. IEEE J. Robotics and Automation, 1987,3(4): 323-344.
  • 10ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000,22(11):1330-1334.

二级参考文献7

共引文献34

同被引文献44

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部