期刊文献+

Rayleigh-Bénard对流的多分形及其谱特征 被引量:3

STRUCTURE CHARACTERS OF RAYLEIGH-BéNARD CONVECTION AND ITS MULTIFRACTAL SPECTRUM
下载PDF
导出
摘要 首先简单介绍了分形和多分形的概念,以及用WTMM方法计算多分形谱的步骤,然后分别从理论上和WTMM方法计算了标准2-6-2分Cantor集的多分形谱图,得出了多分形谱的一般物理意义。在此基础上,利用基于小波的WTMM方法计算了Rayleigh-Bénard对流多分形谱及其随流场结构变化的特征。研究结果表明:基于小波的WTMM方法研究多分形谱是可行的;Rayleigh-Bénard对流温度信号的多分形谱结构在由流场的中心向侧壁边缘的过渡中,其多分形谱态也是渐变的。 This paper introduces fractal and multifractal theory, as well as the application of the WTMM method to compute the multifractal spectrum. Then the multifractal spectrum of the 2-6-2 Cantor Set is analyzed theoretically and by the WTMM method, so that the physical significance of the multifractal spectrum is obtained. The temperature signals of Rayleigh-Benard convection is analyzed using the WTMM method. It is found that the WTMM is a feasible method to analyze the multifractal spectrum. The multifractal structure of Rayleigh-Benard convection change gradually from center to edge.
作者 周宇欢 傅强
出处 《工程力学》 EI CSCD 北大核心 2008年第7期52-56,65,共6页 Engineering Mechanics
关键词 复杂系统 多分形 CANTOR集 小波WTMM方法 RAYLEIGH-BENARD对流 complex system mutilfractal Cantor set wavelet WTMM method Rayleigh-Benard convection
  • 相关文献

参考文献10

  • 1Halsey T C. Phys [M]. Review A, 1986, 33: 1141 - 1151.
  • 2Arneodo A, Grasseau G; Wavelet transform of multifractals [J]. Physics Review Letters, 1988, 61(20): 2281-2284.
  • 3Muzy J F, Bacry E, Arneodo A. The multifractal formalism revisited with wavelets [J]. International Journal of Bifurcation and Chaos, 1994, 4(2): 245-302.
  • 4Ameodo A, Argoul F, Bacry E, Muzy J F, Tabard M. Golden mean arithmetic in the fractal branching of Diffusion-Limited aggregates [J]. Physics Review Letters, 1992, 68(23): 3456-3459.
  • 5Arneodo A, Bacry E, Muzy J F. Oscillating singularities in locally self-similar functions [J]. Physics Review Letters, 1995, 74(24): 4823-4826.
  • 6Ameodo A. Wavelet based fractal analysis of DNA sequences [J]. Physics D, 1996, 96: 292-320.
  • 7Jens Feder. Fractals [M]. New York and London: Plenum Press, 1988.
  • 8王晓平,吴自勤.多重分形谱及其在材料研究中的应用[J].物理,1999,28(6):342-347. 被引量:21
  • 9傅强.多分形特性的子波分析及其在Rayleigh-Benard对流温度信号中的应用[J].工程力学,2002,19(2):100-108. 被引量:9
  • 10Xia K Q, Lui S L. Turbulent thermal convection with an obstructed side wall [J]. Physics Review Letters, 1997, 79(25): 5006-5010.

二级参考文献9

  • 1Li Hua,Phys Rev B,1996年,53卷,16631页
  • 2Li Hua,Phys Rev B,1995年,51卷,13554页
  • 3Wang Bing,Solid State Commun,1995年,96卷,69页
  • 4龙期易,物理,1994年,23卷,158页
  • 5王坚,物理,1992年,21卷,747页
  • 6吴自勤,物理,1992年,21卷,550页
  • 7丁菊仁,物理,1990年,19卷,81页
  • 8Huang L J,Phys Rev B,1989年,40卷,858页
  • 9王晓平,电子显微学报

共引文献24

同被引文献20

  • 1臧保将,商朋见.Multifractal analysis of the Yellow River flows[J].Chinese Physics B,2007,16(3):565-569. 被引量:2
  • 2Seo J.P Kim M.S.,Baek I.C.,Kwon Y.H.,Lee K.S.,Chang S.W.,Yang S.I..Similar speaker recognition using nonlinear analysis[J].Chaos,Solitons and Fractals,July 2004,21(1),p159-164.
  • 3Hou Limin,Wang Shuozhong.Generalized dimensions applied to speaker identification[C].Biometric Technology for Human Identification,Orlando,FL,USA,12-13 April 2004,p555-560.
  • 4Sengupta R.,Dey N.,Dipali N.,Datta A.K..Comparative Study of fractal behavior in quasi-random and quasi-periodic speech wave map[J].Fractal,2001,9(4),p403-414.
  • 5Sabanal S.,Nakagawa M..The fractal properties of vocal sound and their application in the speech recognition model[J],Chaos,Solitons & Fractals,1996,7 (11),p1825-1 843.
  • 6Petry A.,Barone D.A.C..Speaker identification using nonlinear dynamical feature[J].Chaos,Solitons & Fractals,2002,13(2),p221-231.
  • 7Zhou Yuhuan,Wang Jinming,Zhang Xiongwei.Research on Speaker Recognition Based on Multifractal Spectrum Feature[C].ICCMS'09,Sanya,China,Jan 22-24 2010,p463-466.
  • 8Fan Yingle,Yi Li,Tong Qinye.Speaker gender identification based on combining linear and nonlinear features[C].7th World Congress on Intelligent Control and Automation,WCICA'08,Chongqing,China,Jun 25-27 2008,p6739-6744.
  • 9丁亮晶,彭虎,蔡世民,周佩玲.Multifractal Analysis of Human Heartbeat in Sleep[J].Chinese Physics Letters,2007,24(7):2149-2152. 被引量:2
  • 10于浩,刘志红,张晓萍,李锐.基于傅立叶变换的梯田纹理特征提取[J].国土资源遥感,2008,20(2):39-42. 被引量:14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部