期刊文献+

智能预测控制在无级变速器速比跟踪中的应用 被引量:1

Application of Intelligent Predictive Control in CVT Speed Ratio Control
下载PDF
导出
摘要 无级变速器速比控制系统存在着明显的时滞性和非线性,其中时滞性是引起常规控制算法速比跟踪过程中实际速比波动的根本原因。为解决以上问题,设计了无级变速器速比智能预测控制器,该控制器以支持向量机非线性模型作为控制器的预测模型,解决线性预测模型失配问题;以混沌优化算法作为控制器的滚动优化策略,解决最佳控制量实时计算的问题。台架试验结果表明,与常规PID控制器相比,应用智能预测控制器,系统的稳态性能和动态性能都得以提高:在稳态跟踪过程中,速比的波动更小;在阶跃响应中,超调量和过度时间均显著下降。 The continuously variable transmission(CVT) speed ratio system was described with a nonlinear characteristics with pure time- delay by analyzing its basic control principle. The characteristics of time--delay were the basic reason that induced speed ratio tracking fluctuation when the common--used control algorithm was applied in this system. Aiming at this problem,an intelligent predictive controller(IPC) was designed according to the requirements of CVT speed ratio control. The proposed controller utilized the support vector machine(SVM) predictive model to forecast the future control effect; the introduction to this SVM predictive model improves the forecasting precision for its nonlinear behaviors. The optimal control was determined by using a simple chaos optimal algorithm (COA); the introduction to the chaos optimal algorithm improves the optimal control searching efficiency effectively and solves the problem of real--time performance in control process. It is shown from the bench test that the proposed control algorithm accomplishes the better steady and dynamic performances than those of general PID: the fluctuation reduces in static tracking; the overshoot and the transition time decrease obviously in step--response.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第14期1664-1668,共5页 China Mechanical Engineering
关键词 无级变速器 智能预测控制 支持向量机 混沌优化算法 continuously variable transmission intelligent predictive control support vector machine chaos optimal algorithm
  • 相关文献

参考文献8

  • 1Wonoh K,George V. Fuzzy Logic Ratio Control for a CVT Hydraulic Module[C]//Proceedings of 15th IEEE International Symposium on Intelligent Control. New York:IEEE Press, 2000 : 151-156.
  • 2程乃士,张德臻,刘温,张伟华.金属带式车用无级变速器[J].中国机械工程,2000,11(12):1421-1423. 被引量:13
  • 3诸静.智能预测控制及其应用[M].杭州:浙江大学出版社,2000..
  • 4刘金刚,周云山,邹乃威,蔡源春,苏建业.DMC-PID串级控制在CVT速比控制系统中的应用[J].湖南大学学报(自然科学版),2007,34(10):44-48. 被引量:8
  • 5Liu Jingang, Zhou Yunshan, Cai Yuanchun, et al. The Application of Generalized Predictive Control in CVT Speed Ratio Control[C]//IEEE International Automation and Logistics Conference. New York: IEEE Press,2007 : 649-654.
  • 6Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7Martinez M, Senent J S,Blasco X. Generalized Predictive Control Using Genetic Algorithms(GAGPC) [J]. Engineering Applications of Artificial Intelligence, 1998,11 ( 3 ) : 355-367.
  • 8宋莹,陈增强,袁著祉.基于混沌优化的有约束广义预测控制器[J].工业仪表与自动化装置,2006(2):3-5. 被引量:5

二级参考文献19

共引文献212

同被引文献5

  • 1陈东宁,姜万录,王益群.基于粒子群算法的冷连轧机轧制负荷分配优化[J].中国机械工程,2007,18(11):1303-1306. 被引量:17
  • 2Maiti R, Saha R, Watton J. The static and dynamic characteristics of a pressure relief valve with a proportional solenoid controlled pilot stage [ J ]. Proceedings of the IMechE Part I: Journal of System Control Engineering, 2002, 216 (2) : 143 - 156.
  • 3Eberhart R C, Kenedy J. A new optimizer using particle swarm theory [ C ] //Proceedings of the IEEE 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995:39 -43.
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [ C ]//Proceedings of 1995 IEEE International Conference on Neural Networks, Piscataway, USA, 1995,4 : 1 942 - 1 948.
  • 5Van den Bergh F. An analysis of particle swarm optimizers[ D ]. South Africa: Department of Computer Science University of Pretoria, 2002.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部