摘要
The finite element method based on the equivalent domain integral technique was developed to simulate the push out test and evaluate the interfacial fracture toughness of SiC reinforced titanium matrix composites. A special subroutine was introduced while modeling the push-out test to control interfacial failure process. In addition, the residual stresses, Poisson ratio and friction stresses were all considered in the finite element analysis and the interface debonding was described as a continuous process. The results show that the interfacial fracture toughness of SiC/Timetal-834 is about 50 J/m2. Moreover, the effects of various parameters on the interfacial fracture toughness and the variations of energy release rates at both ends of the specimen were analyzed in detail.
The finite element method based on the equivalent domain integral technique was developed to simulate the push out test and evaluate the interfacial fracture toughness of SiC reinforced titanium matrix composites. A special subroutine was introduced while modeling the push-out test to control interfacial failure process. In addition, the residual stresses, Poisson ratio and friction stresses were all considered in the finite element analysis and the interface debonding was described as a continuous process. The results show that the interfacial fracture toughness of SiC/Timetal-834 is about 50 Jim2. Moreover, the effects of various parameters on the interfacial fracture toughness and the variations of energy release rates at both ends of the specimen were analyzed in detail.
出处
《中国有色金属学会会刊:英文版》
EI
CSCD
2008年第4期925-929,共5页
Transactions of Nonferrous Metals Society of China
基金
Project(50371069) supported by the National Natural Science Foundation of China
Project(04G53044) supported by the Defense Fundamental Research Program of China
Project supported by the Doctoral Innovation Foundation of Northwestern Polytechnical University, China