期刊文献+

Microstructure of aluminum twin-roll casting based on Cellular Automation 被引量:7

Microstructure of aluminum twin-roll casting based on Cellular Automation
下载PDF
导出
摘要 Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well. Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well.
出处 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第4期944-948,共5页 Transactions of Nonferrous Metals Society of China
基金 Project(50564004) supported by the National Natural Science Foundation of China Project(G2000067208-3) supported by the National Basic Research Program of China Project(0250020) supported by the Natural Science Foundation of Jiangxi Province, China
关键词 铸造 微观结构 细胞自动机 twin-roll casting aluminum microstructure Cellular Automation(CA)
  • 相关文献

参考文献4

二级参考文献34

  • 1Zhu Panping,Acta Metall,1992年,40卷,3369页
  • 2Zhu Panping,Acta Metall,1992年,40卷,683页
  • 3俞昌铭(译),热传导,1983年,531页
  • 4Shing Lo T, Karma A, Plapp M. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability[J]. Phys Rev E, 2001, 63:031504(1)-031504(15).
  • 5Nestler B, Wheeler A A, Garcke H. Modelling of microstructure formation and interface dynamics[J].Computational Materials Science, 2003, 26:111 -119.
  • 6Folch R, Plapp M. Toward a quantitative phase-field model of two-phase solidification[J]. Phys Rev E,2003, 68: 010602(1)-010602(4).
  • 7Emmerich H. The Diffuse Interface Approach in Materials Science[M]. Heidelberg, Germany: Springer,2003. 31-53.
  • 8Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]. Phys Rev E, 1998, 57:4323-4349.
  • 9Boettinger W, Warren J. Simulation of the cell to plane front transition during directional solidificationat high velocity[J]. Journal of Crystal Growth,1999, 200: 583-591.
  • 10Kurz W, Fisher D J. Fundamentals of Solidification(fourth ed)[M]. Switzerland: Trans Tech Publications Ltd, 1998. 93 - 100.

共引文献62

同被引文献41

  • 1杨明波,潘复生,彭晓东,丁培道.双辊薄带凝固过程的宏观-微观耦合数学模型[J].重庆大学学报(自然科学版),2005,28(5):39-44. 被引量:7
  • 2湛利华,李晓谦,唐朝阳,钟掘.铝带坯连续铸轧过程热力耦合有限元分析[J].中国机械工程,2005,16(11):979-984. 被引量:10
  • 3刘庆.电子背散射衍射技术及其在材料科学中的应用[J].中国体视学与图像分析,2005,10(4):205-210. 被引量:57
  • 4Zhenmin Wang,Yuan Fang,Junjie Qi,Yue Zhang,Yan Yu,Jianchun Wu.Microstructure analysis of AISI 304 stainless steel produced by twin-roll thin strip casting process[J].Journal of University of Science and Technology Beijing,2007,14(5):420-424. 被引量:2
  • 5EIZADJOU M, DANESH MANESH H, JANGHORBAN K. Investigation of roll bonding between aluminum alloy strips [J]. Materials & Design, 2008, 29(4): 909-913.
  • 6TILLOUS K, TOLL-DUCHANOY T, BAUER-GROSSE E, HERJCHER L, GEANDIER G. Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T74 [J]. Surface & Coatings Technology, 2009, 203(19): 2969-2973.
  • 7KELES O, DUNDAR M. Aluminum foil: Its typical quality problems and their causes [J]. Journal of Materials Processing Technology, 2007,186(1-3): 125-137.
  • 8ZHU Y Z, HUANG R Y, ZHU Z, XIANG Z D. Comparative study on effects of microstructures of hot rolled and twin roll casting 1235 aluminium alloy on surface quality of aluminium foils produced [J]. Materials Science and Technology, 2011, 27(4): 761-766.
  • 9DAS S, LIM N S, KIM H W, PARK C G. Effect of rolling speed on microstructure and age-hardening behaviour of AI-Mg-Si alloy produced by twin roll casting process [J]. Materials & Design, 2011, 32(8-9): 4603-4607.
  • 10DAS S, LIM N S, SEOL J B, KIM H W, PARK C G. Effect of the rolling speed on microstructural and mechanical properties of aluminum-magnesium alloys prepared by twin roll casting [J]. Materials & Design, 20 I 0, 31 (3): 1633-1638.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部