期刊文献+

对称矩阵空间上保对合的映射(英文) 被引量:1

Maps on spaces of symmetric matrices preserving involution relation
下载PDF
导出
摘要 设F是一个元素个数大于2的域, S2(F)是F上的2×2对称矩阵空间。对任意的A,B∈S2(F)和λ∈F,如果A-λB是对合当且仅当Φ(A)-λΦ(B)是对合,则称映射Φ:S2(F)→S2(F)是保对合关系的。当F的特征不为2时刻画了Φ的形式。 Suppose F is an arbitrary field with at least three elements. Let S2 (F) be the space of all 2 × 2 symmetric matrices over F. A map Φ:S2(F)→S2(F) is said to preserve involution relation if A - λB is an involution if and only if Φ(A)-λΦ(B) is an involution for any A,B ∈S2 (F) and λ ∈ F. When the characteristic of F is not 2, the structure of Ф is described.
作者 生玉秋
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2008年第3期351-353,共3页 Journal of Natural Science of Heilongjiang University
基金 Supported by the Natural Science Foundation of China(10671026) the Fund of Heilongjiang Education Committee(11521217)
关键词 对合 对称阵 field involution symmetric matrix
  • 相关文献

参考文献5

  • 1Cao C G, Zhang X. Linear preservers between matrix modules over connected commutative rings [ J ]. Linear Algebra Appl, 2005,397:355 - 366.
  • 2Li C K, Pierce S. Linear preserver problems[ J]. Amer Math Monthly, 2001,108:591 - 605.
  • 3Semrl P. Hua' s fundamental theorems of the geometry of matrices and related results[ J]. Linear Algebra Appl, 2003,361:161 - 179.
  • 4Zhang X. Idempotence -preserving maps without the linearity and surjectivity assumptions[ J]. Linear Algebra Appl, 2004,387:167 -182.
  • 5Hua L G, Wan Z X. Classical group [ M ]. Shanghai: Shanghai Scientific and Technical Publishers, 1962.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部