摘要
设F是一个元素个数大于2的域, S2(F)是F上的2×2对称矩阵空间。对任意的A,B∈S2(F)和λ∈F,如果A-λB是对合当且仅当Φ(A)-λΦ(B)是对合,则称映射Φ:S2(F)→S2(F)是保对合关系的。当F的特征不为2时刻画了Φ的形式。
Suppose F is an arbitrary field with at least three elements. Let S2 (F) be the space of all 2 × 2 symmetric matrices over F. A map Φ:S2(F)→S2(F) is said to preserve involution relation if A - λB is an involution if and only if Φ(A)-λΦ(B) is an involution for any A,B ∈S2 (F) and λ ∈ F. When the characteristic of F is not 2, the structure of Ф is described.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2008年第3期351-353,共3页
Journal of Natural Science of Heilongjiang University
基金
Supported by the Natural Science Foundation of China(10671026)
the Fund of Heilongjiang Education Committee(11521217)
关键词
域
对合
对称阵
field
involution
symmetric matrix