期刊文献+

无阀微泵动态特性的固液耦合分析 被引量:4

Solid-liquid Coupling Analysis of Valveless Micropumps Dynamic Characteristics
下载PDF
导出
摘要 根据无阀微泵的工作原理,对泵膜—流体耦合振动过程进行理论分析,推导出此状态下的非线性耦合振动方程。并采用伽辽金加权最小余量法得出方程的近似解。在此基础上讨论阻尼系数、驱动力及薄膜固有频率与薄膜振幅、相位差及无阀泵流量的关系。理论分析表明在阻尼系数较小时,在一阶固有频率附近还存在振幅增大的现象,随着阻尼系数的增大,流体对泵膜的阻力逐渐增大,振幅随着频率的增大迅速衰减,相位差也越来越快地靠近90°;驱动力一定的情况下,薄膜的固有频率越低,薄膜在低频段振动可以达到的振幅越大;对于流量而言,在低频段,流量很快就达到极大值.而且阻尼系数越大、泵膜固有频率越低、驱动力越大,流量越快到达极大值。 According to the working principle of valveless micropumps, the theoretical analysis of membrane-fluid coupling vibration process is carried out and a non-linear coupling vibration equation is developed. The approximate solution is obtained by using Galerkin weighted minimum residual method. And the relations among the damping coefficient, the driving force, the natural frequency of membrane and the amplitude of membrane, phase difference, and the flow rate of valveless pumps are discussed. Theoretical analysis shows that when the damping coefficient is small, the amplitude increases near the first order natural frequency. With the increasing of damping coefficient, the resistance of fluid increases gradually on the membrane. At the same time, the amplitude decreases rapidly and phase difference tends to 90° faster with the increasing frequency. When the driving force is certain, the lower the first order frequency of the membrane is, the greater the amplitude can achieve in low frequency. As for the flow rate, it will reach the maximum value quickly in low frequency. Moreover, the greater the damping coefficient is, the lower the natural frequency of pump membrane is, the greater the driving force is, the flux will reach its maximum value more quickly.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第7期69-74,共6页 Journal of Mechanical Engineering
基金 辽宁省教育厅科学研究计划(05L062) 大连民族学院博士启动基金资助项目
关键词 无阀微泵 动态特性 固液耦合 Valveless micropumps Dynamic characteristics Solid-liquid coupling
  • 相关文献

参考文献9

  • 1PAN L S, NG T Y. Analytical solutions for the dynamic analysis of a valveless micropump - a fluid-membrane coupling study[J]. Sensors and Actuators A, 2001, 93.. 173-181.
  • 2FAN B, SONG G, HUSSAIN F. Simulation of a piezoelectrically actuated valveless micropump [C]// Proc. of SPIE, San Diego, CA, USA, 5389, 2004: 126-134.
  • 3鲁立君,吴健康.生物芯片压电微流体泵液-固耦合系统模态分析[J].固体力学学报,2005,26(4):459-465. 被引量:6
  • 4OLSSON A, STEMME G, STEMME E. Diffuser-element design investigation for valve-less pumps[J]. Sensors and Actuators A, 1996, 57: 137-143.
  • 5TORSTEN G. Microdiffusers as dynamic passive valves for Micropump applications[J]. Sensors and Actuators A, 1998,69: 181-191.
  • 6OLSSON A, ENOKSSON P, STEMME G, et al. Micromachined flat-walled valveless diffuser pumps[J]. Journal of Micromechanics and Microengineering, 1997, 6:161-166.
  • 7HELENE Andersson. A valve-less diffuser micropump for microfluidic analytical systems[J]. Sensors and Actuators B, 2001, 72: 259-265.
  • 8VISHAL S, SURESH V G, JAYATHI Y M. Low Reynolds number flow through nozzle-diffuser[J]. Sensors and Actuators A, 2004, 113: 226-235.
  • 9白兰,冯志庆,吴一辉.基于MEMS的无阀泵的数值仿真与参数设计[J].微细加工技术,2006(5):41-46. 被引量:5

二级参考文献22

  • 1张保柱,张永立,吴建康.生物芯片压电微流体泵扩散管液体流量效率分析[J].机械科学与技术,2004,23(7):802-804. 被引量:1
  • 2李勇,江小宁,周兆英,叶雄英.微管道流体的流动特性[J].中国机械工程,1994,5(3):24-25. 被引量:20
  • 3张远君 王平.流体力学大全[M].北京:北京航空航天大学出版社,1991.7-9,223.
  • 4[1]Olsson A,Stemme G,Stemme E.Numerical and experimental studies of flat-walled diffuser elements for valveless micropumps[J].Sensors and Actuators A:Phys,2000,84:165-175.
  • 5[2]Gerlach T.Microdiffusers as dynamic passive valves for Micropump applications[J].Sensors and.Actuators A:Phys,1998,69:181-191.
  • 6牧原光宏,笹篬久仁彦,永山昭.微小管道液体流动-Navier-Stokes方程的适用性[J].精密工学会杂志,1993,59(3):31-36.
  • 7[6]Pfahler J.Liquid Transport in Micro and Submicro Channels[J].Sensors and Actuators,1999,A21-23:431-434.
  • 8[10]Gravesen P,Branebjerg J,Jensen O S.Microfluidics:a review[J].J Micromech Microeng,1993,3:168-182.
  • 9Laser D J, Santiago J G. A review of micropumps. J Micromech Microeng, 2004,14(1):35 -64.
  • 10Michael Koch, Alan Evans, Arthur Brunn schweiler. Microfluidics Technology and Application, Research Studies Press Lt,2000, 1^st Edition, 177 - 180.

共引文献9

同被引文献38

  • 1王皓,罗先刚,姚汉民,杜春雷.微机械往复式无阀泵的振动特性分析[J].光学精密工程,2005,13(z1):98-102. 被引量:4
  • 2王立文,高殿荣,杨林杰,李岩,王广义,范卓立.压电驱动微泵泵膜振动有限元分析[J].机械工程学报,2006,42(4):230-235. 被引量:9
  • 3刘国君,程光明,杨志刚.一种压电式精密输液微泵的试验研究[J].光学精密工程,2006,14(4):612-616. 被引量:18
  • 4王海宁,崔大付,耿照新,陈兴.一种基于MEMS技术的压电微泵的研究[J].传感器与微系统,2006,25(8):82-84. 被引量:7
  • 5杨恺祥.压电无阀式微泵浦制造与测量分析[D].台湾云祺科技大学,2004.
  • 6Morris C J, Forster F K. Low--order Modeling of Resonance for Fixed--valve Micropumps Based on First Principles [ J ]. Journal Microelectromech. Syst. , 2003, 12: 325-334.
  • 7Olsson A, Stemme G, Stemme E. A Numerical De- sign Study of the Valveless Diffuser Pump Using a Lumped--mass Model[J]. Journal Mieromeeh. Mi- croeng. , 1999, 9: 34-44.
  • 8Bourouina T, Grandchamp J P. Modeling Mi- cropumps with Electrical Equivalent Networks[J]. Journal Micromech. Microeng. , 1996, 6: 398-404.
  • 9Lin X Z, Ying J, Chen Zichen. Research on Termi- nal Behavior of Electrostatically Actuated Mi- cropump Membrane Based on Modal Analysis[C]// Wei Y L, Chong K T, Takahashi T, et al. ICMIT 2005: Mechatronics, MEMS and Smart Materials, SPIE. Bellingham, 2005,6040: P60400U.
  • 10Faris W F, Abdel--Rahman E M, Nayfeh A H. Mechanical Behavior of an Electrostatically Actuated Micropump[C]//Agnes G, Chamis C, Noor A, et al. 43rd AIAA/ASME/ASCE/AHS/ASC Struc- tures, Structural Dynamics, and Materials Confer- ence. Denver, 2002: AIAA2002-1303.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部