期刊文献+

余热驱动多功能热管型吸附制冰机组的性能 被引量:1

Performance of a Multifunctional Heat Pipe Type Adsorption Ice Maker Machine Driven by Waste Heat
下载PDF
导出
摘要 介绍一种以氯化钙/活性炭复合吸附剂和氨作为吸附工质对的多功能热管型吸附式制冰机组,该机组利用低品位余热作为驱动热源进行制冰。为了强化机组换热及防止余热腐蚀现象,采用热管技术完成吸附床的加热解吸、冷却吸附及回热过程,吸附床加热解吸时,形成以余热发生装置为热管蒸发段、以吸附床为热管冷凝段的热管型加热回路;两吸附床间回热时形成以高温解吸床为热管蒸发段、以低温吸附床为热管冷凝段的热管型回热回路:吸附床冷却吸附时,形成以吸附床为热管蒸发段、以冷却器为热管冷凝段的热管型冷却回路。在此基础上采用新回质回热循环方式对机组性能进行了研究。试验结果表明:新回质回热方式与传统回质回热方式相比,可大幅度增加机组制冷量,单位质量吸附剂制冷功率,(Specific cooling power,SCP)和性能系数(Coefficient of performance,COP)增大幅度均在17%以上:相对基本循环,传统回质回热方式可使机组COP提高43.8%,新回质回热方式可使机组COP提高幅度高达68.7%。可见采用新回质回热方式更有利于提高吸附制冰机组的工作性能。 A multifunctional heat pipe type adsorption ice maker with CaCh/activated carbon as compound adsorbent and ammonia as refrigerant is designed. Low-grade waste heat is utilized as driving heat source in this machine to make ice, and heat pipe technology is employed to enhance heat transfer and prevent the corrosion of adsorbers in the presented system. The heating, cooling and heat recovery processes between two adsorbent beds are performed by multifunctional heat pipes. The waste heat device serves as evaporator and adsorber serves as condenser during desorption process while adsorber works as evaporator and cooler works as condenser in adsorption phase, and high temperature bed serves as evaporator and low temperature bed serves as condenser during heat recovery process. The adsorption performance is investigated by introducing a novel mass and heat recovery strategy. The experimental results show that the novel strategy can obtain a higher adsorption cooling capacity compared with conventional mass and heat recovery, and the former can improve coefficient of performance (COP) and specific cooling power (SCP) by more than 17 %. In comparison with basic cycle, the COP improvements of conventional and novel mass and heat recoveries are 43.8 % and 68.7 %, respectively. The novel strategy is more beneficial to improvement of the system performance.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第7期101-105,共5页 Journal of Mechanical Engineering
基金 国家杰出青年科学基金(50225621) 上海市自然科学基金(05ZR14072)资助项目
关键词 吸附制冷 回质 回热 热管 制冰机 Adsorption refrigeration Mass recovery Heat recovery Heat pipe Ice maker
  • 相关文献

参考文献12

  • 1WANG Ruzhu, OLIVEIRA R G. Adsorption refrigeration- an efficient way to make good use of waste heat and solar energy [J]. Progress in Energy and Combustion Science, 2006, 32: 424-458.
  • 2SHELTON S V, WEPFER J W, MILES D J. Ramp wave analysis of the solid/vapor heat pump [J]. ASME J. Energy Resources Technology, 1990, 112: 69-78.
  • 3CRITOPH R E. Performance estimation of convective thermal wave adsorption cycles [J]. Applied Thermal Engineering, 1996, 16: 429-437.
  • 4DOUSS N, SUN L M, MEUNIER F. Predictive model and experimental results for a two-adsorber solid adsorption heat pump [J]. Ind. Eng. Chem. Res., 1988, 27:310-316.
  • 5PONS M, POYELLE F. Adsorptive machines with advantaged cycles for heat pumping or cooling applications [J]. International Journal of Refrigeration, 1999, 22: 27-37.
  • 6WANG Ruzhu. Performance improvement of adsorp- tion cooling by heat and mass recovery operation[J]. International Journal of Refrigeration, 2001, 24.- 602-611.
  • 7SAHA B B, KOYAMA S, KASHIWAGI T, et al. Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system[J]. International Journal of Refrigeration, 2003, 26: 749-757.
  • 8王如竹,王丽伟.低品位热能驱动的绿色制冷技术:吸附式制冷[J].科学通报,2005,50(2):101-111. 被引量:35
  • 9WANG Liwei, WANG Ruzhu, WU Jingyi, et al. Compound adsorbent for adsorption ice maker on fishing boats [J]. International Journal of Refrigeration, 2004, 27: 401-408.
  • 10WANG Ruzhu . Efficient adsorption refrigerators integrated with heat pipes [J]. Applied Thermal Engineering, 2008, 28:317-326.

二级参考文献65

  • 1刘业凤,王如竹,夏再忠.连续循环式吸附空气取水系统[J].化工学报,2004,55(6):1002-1005. 被引量:8
  • 2夏再忠 王如竹 吴静怡 等.余热驱动的复合交变热管发生器[P].专利申请号:200410018291.3.2004.
  • 3王丽伟 王如竹 吴静怡.类分离热管船用吸附制冰机[P].专利申请号:200310108924.5.2003.
  • 4夏再忠 王如竹 吴静怡 等.采用分离热管的新型高效可靠的吸附制冷机[P].专利申请号:200410025398.0.2003.
  • 5Hulse G E. Refroidissemem d'un wagon frigorifique a marchandises par un system a adsrption utilisam le gel de silice. Revue Gen Froid, 1929. 10: 281-284.
  • 6Plank R, Kuprianoff J. In die Kleinltemaschine. Berlin:Springer-Verlag, 1960.
  • 7Meunier F, Kaushik S C, Neveu P, et al. A comparative thermodynamic study of sorption systems: second law analysis. International Journal of Refrigeration, 1996,19(6): 414-421.
  • 8Shelton S, Miles D. Solid/vapor thermally driven heat pump development. In: Prodeedings of the International Workshop on Research Activities on Advanced Heat Pumps. Austria: Technical University of Graz, 1986, 403-420.
  • 9Tchernev D I, Emerson D T.High-efficiency regenerative zeolite heat pump. ASHRAE Transactions, 1988, 14:2024-2032.
  • 10Jones J A.Carbon/ammonia regenerative adsorption heat pump. Proceedings of the International Absorption Heat Pump Conference. ASME, AES, 1993, 31:449-455.

共引文献34

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部