期刊文献+

基于动态Bayesian网络的基因调控网络建模 被引量:4

Dynamic Bayesian network approach for modeling gene regulatory networks
原文传递
导出
摘要 为了精确建模与推断基因调控网络,提出一种基于动态Bayesian网络的多数据融合方法(SP-DBN)。该方法利用结构期望最大算法进行未知结构学习,基于粒子滤波方法完成参数学习,可有效处理数据缺失与噪声问题,更好地捕捉数据中固有的动态特性,并通过其先验结构,在基因表达数据的基础上,自然地融合转录因子绑定位点等多数据源信息。基于酿酒酵母的真实数据,实验结果表明:对于仅采用基因表达数据的情况,SP-DBN的敏感度与特异度分别提高到19%和95%;融入绑定位点数据后,SP-DBN的敏感度可从19%进一步提升至20%,而特异度则仍保持在95%的水平。 A dynamic Bayesian network-based multiple data fusion method was used to improve the modelling accuracy and the inferred gene regulatory networks. Structural expectation maximization and particle filtering are used to learn the unknown network structure and the parameters in a method that can effectively handle missing and noisy data. The method captures the dynamic nature of the biological system and naturally incorporates other data from transcription factor binding location data into the original gene expression data. The effectiveness of the method is shown by tests on Saccharomyces Cerevisiae cell cycle data. The results show that the sensitivity and specificity of the method are increased by 19% and 95% for the gene expression data itself and the prediction accuracy is raised further with multiple data sources.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第7期1173-1177,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60621062,60775040)
关键词 基因调控网络 动态Bayesian网络 结构期望最大 粒子滤波 多数据融合 gene regulatory network dynamic Bayesian network structural expectation maximization particle filtering multiple data fusion
  • 相关文献

参考文献6

  • 1Hartemink A J, Gifford D K, Jaakkola T S, et al. Combing location and expression data /or principled discovery of genetic regulatory network models [C]// Proc Pacific Symposium on Biocomputing. Kauai, USA: World Scientific Press, 2002:437 -- 449.
  • 2Kim S, Imoto S, Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data [J]. Biosystems, 2004, 75: 57- 65.
  • 3Murphy K, Mian S. Modeling gene expression data using dynamic Bayesian networks [R]. Computer Science Division, University of California Berkeley, 1999.
  • 4Koller D, Lerner U. Sampling in factored dynamic systems[C] // Doueet A, de Freitas N, Gordon N. Sequential Monte Carlo in Practice. New York : Springer-Verlag, 2001.
  • 5ZHANG Yu, DENG Zhidong, JIANG Hongshan, et al. Dynamic Bayesian network (DBN) with structure expectation maximization (SEM) for modeling of gene network from time series gene expression data [C] // Proc the 2006 International Conference on Bioinformatics & Computational Biology. Las Vegas, USA: CSREA Press, 2006:41-47.
  • 6Lee T I, Rinaldi N J, Robert F, et al. Transcriptional regulatory networks in Saccharomyces Cerevisiae [J]. Science, 2002, 298(5594): 799- 804.

同被引文献40

  • 1王利民,李雄飞,张海龙.基于广义信息论的贝叶斯分类器动态建模[J].吉林大学学报(工学版),2009,39(3):776-780. 被引量:5
  • 2董立岩,刘光远,苑森淼,李永丽,孙铭会.混合式朴素贝叶斯分类模型[J].吉林大学学报(信息科学版),2007,25(1):57-61. 被引量:8
  • 3Hartemink A J,Gifford D K,Jaakkola T S,et al.Combing Location and Expression Data for Principled Discovery of Genetic Regulatory Network Models[C] //Proc Pacific Symposium on Biocomputing.Kauai:World Scientific Press,2002:437-449.
  • 4WANG Yong,Joshi T,ZHANG Xiang-sun,et al.Inferring Gene Regulatory Networks from Multiple Microarray Datasets[J].Bioinformatics,2006,22(19):2413-2420.
  • 5Friedman N,Linial M,Nachman I,et al.Using Bayesian Networks to Analyze Expression Data[J].Journal of Computational Biology,2000,7(3/4):601-620.
  • 6Cooper G F,Herskovits E.A Bayesian Method for the Induction of Probabilistic Networks from Data[J].Machine Learning,1992,9(4):309-347.
  • 7Lee T I,Rinaldi N J,Robert F,et al.Transcriptional Regulatory Networks in Saccharomyces Cerevisiae[J].Science,2002,298:799-804.
  • 8HU Hai-yan,YAN Xi-feng,HUANG Yu,et al.Mining Coherent Dense Subgraphs Across Massive Biological Networks for Functional Discovery[J].Bioinformatics,2005,21(1):213-221.
  • 9Bower J M, Bolouri H. Computational Modelling of Genetic and Biochemical Networks[M]. Cambridge, USA: MIT Press, 2001.
  • 10Smolen P, Baxter D A, Byrne J H. Modeling Circadian Oscillations with Interlocking Positive and Negative Feedback Loops[J]. Journal of Neuroscience, 2001, 21(17): 6644-6656.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部