摘要
推广了投射复盖的概念,定义了相对投射复盖,讨论了它存在的条件,得出了模A有M—投射复盖当且仅当存在M—投射模P及满同态f:P→A,使得Kerf≤oP。并利用它刻划了完全环,得出了环R为完全环当且仅当任意半单模A有R(A)—投射复盖。
The definition of projective cover is generalizated and the condition for the existence of M projective cover for every module A is given. The conclusion that the module A has M projective cover iff there is a M projective module p and an epimorphism f:P→A such that Ker f≤。P is obtained. Hence, we inscribe the perfect ring and obtain that the ring R is perfect iff every semisimple module A is R (A) projective cover.
出处
《山东建筑工程学院学报》
1997年第2期96-100,共5页
Journal of Shandong Institute of Architecture and Engineering
关键词
M-投射模
M-投射复盖
完全环
投射复盖
M projective module
M projective cover
perfet ring
semiperfect ring