期刊文献+

基于小波逼近变换的非线性分布参数系统辨识 被引量:1

Identification of Non-linear Distributed Parameter Systems Based on Wavelet Approximation Transform
下载PDF
导出
摘要 利用Haar小波正交规范基的微分运算矩阵及其运算性质,将描述一类非线性分布参数系统的偏微分方程转化为代数矩阵方程,结合最小二乘法,确定出待辨识的系统参数,避免了对偏微分方程进行多重积分运算的繁琐;并且,可以不考虑初始条件和边界条件,较其他采用积分运算矩阵的辨识方法要简单得多,简化了分布参数系统辨识的求解过程。该方法简单,计算量小,辨识精度高。仿真结果表明了该算法应用在非线性分布参数系统辨识中的有效性。 The differential operational matrix of Haar wavelets and its properties are applied to the identification problem of a class of the non-linear distributed parameter systems(DPS).The partial differential equation describing non-linear DPS is transformed into an algebraic matrix equation.By using the least square parameter estimation algorithm,the identification is made,and the initial conditions and boundary conditions are not needed to consider.The proposed method is simpler than others which make use of the integrated operational matrix.The simulation results show the efficiency of the proposed method applying to non-linear distributed parameter system identification.
出处 《控制工程》 CSCD 2008年第4期410-411,455,共3页 Control Engineering of China
关键词 非线性分布参数系统 小波函数 微分运算矩阵 参数辨识 non-linear distributed parameter systems wavelet function differential operational matrices parameter identification
  • 相关文献

参考文献6

二级参考文献18

  • 1曾宪文,高桂革,顾幸生,.基于小波分析的分布参数系统最优边界控制的逼近算法[J].华东理工大学学报(社会科学版),2002,17(S1):49-52. 被引量:1
  • 2孙冬梅,李永新,卜雄洙.一种使用正交函数的非线性系统建模方法[J].南京理工大学学报,2004,28(6):612-616. 被引量:2
  • 3赵松年 熊小芸.子波变换与子波分析[M].北京:电子工业出版社,1997..
  • 4Wang S Y,Block-pulse operator and its applications in Chinese,1989年
  • 5Hsu N,Int J Control,1982年,36卷,281页
  • 6Gu J S, Jiang W S. The Haar wavelets operational matrix of integration[J]. Int J of Systems Sci, 1996,27(7) : 623- 628.
  • 7崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995..
  • 8Park C,Tsiotras P.Approximatious to optimal feedback control using a successive wavelet collocation algorithm[A].Proceedings of the 2003 American Control Conference[C].Piscataway,NJ,USA:IEEE,2003.1950~1955.
  • 9Karimi H R,Moshiri B,Lohmann B,et al.Haar wavelet-based approach for optimal control of second-order linear systems in time domain[J].Journal of Dynamical and Control Systems,2005,11 (2):237~252.
  • 10Beylkin G.On the representation of operators in bases of compactly supported wavelets[J].SIAM Journal on Numerical Analysis,1992,29(6):1716~1740.

共引文献19

同被引文献18

  • 1赵旭东,项光明,姚强,马春元,陈昌和.干法烟气脱硫固体颗粒物循环特性及微观机理研究[J].中国电机工程学报,2006,26(1):70-76. 被引量:21
  • 2Boubaker O, Babary J P. On SISO and MIMO variable structure control of non linear distributed parameter system [J]. Journal of Process Control, 2009, 19 (3): 729-737.
  • 3Shang H L, Forbes J F, Guay M. Model predictive control for quasilinear hyperbolic distributed parameter systems [J]. Ind. Eng. Chem. Res. , 2004, 43:2140-2149.
  • 4Fuxman A M, Aksikas I, Forbes J F, Hayes R. LQ- feedback control of a reverse flow reactor [J]. Journal of Process Control, 2008, 18 (7): 654-662.
  • 5Aksikas I, Fuxman A, Forbes J F, Winkin J J. LQ control design of a class of hyperbolic PDE systems: application to fixed-bed reactor [ J ]. Automatica, 2009, 45 ( 6 ): 1542-1548.
  • 6Shang H L, Forbes J F, Guay M. Feedback control of hyperbolic distributed parameter systems [J ]. Chemical Engineering Science, 2005, 60 (4) : 969-980.
  • 7Polis M P, Goodson R E, Wozny M J. On parameter identification for distributed systems using Galerkin's criterion [J]. Automatica, 1973, 9 (1): 53-64.
  • 8Banks H, Lamm P. Estimation of variable coefficients in parabolic distributed systems [J], IEEE Transactions on Automatic Control, 1985, 30 (4): 386-398.
  • 9Zheng D, Hoo K. Low-order model identification for implementable control solutions of distributed parameter systems [J]. Computers & Chemical Engineering, 2002, 26 (7/8): 1049-1076.
  • 10I,iuFeng(刘峰),ShenJianzhong(申建中).Method of Mathematical Physics(数学物理方法)[M].Xi’an:Xi’an Jiaotong University Press,2008:269.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部