期刊文献+

数据缺损条件下基于关联度的跳频频率预测

FH Frequency Prediction Based on Incidence Degree Under Data Loss
下载PDF
导出
摘要 对于跳频频率预测,由于硬件和测量等原因,在某些时刻会出现缺损数据现象。忽略这些数据,会导致真实跳频频率序列动力学出现变化并影响预测。因此,缺损数据的预测问题是跳频频率预测的一个重要课题。分析了数据缺损条件下基于关联度的跳频频率预测方法性能,提出了相应解决措施,仿真结果表明了所提方法的有效性。 For reasons like hardware and measurement,data loss phenomenon sometimes appears on FH frequency prediction.Ignoring the data will lead to real FH sequence dynamics to change and impact prediction.Thus data loss prediction problem is an important subject of FH frequency prediction.Under the condition of data loss,the performance of FH frequency prediction method based on incidence degree is analyzed,and corresponding solutions are presented.The simulation result shows the effectiveness of the proposed method.
出处 《控制工程》 CSCD 2008年第4期432-433,477,共3页 Control Engineering of China
基金 国家863高技术研究发展计划基金资助项目(41101060209)
关键词 数据缺损 混沌理论 关联度 预测 data loss chaotic theory incidence degree prediction
  • 相关文献

参考文献6

二级参考文献27

  • 1丁晶,邓育仁,傅军.洪水相空间预测[J].成都科技大学学报,1995(4):7-11. 被引量:16
  • 2傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230. 被引量:39
  • 3高安秀枢.分数维[M].北京:地震出版社,1989..
  • 4Holger K, Thomas S. Nonlinear time series analysis[M]. Tsinghua university publishing company, 2001.
  • 5Framer, Sidorowich. Predicting chaotic time series[J]. Phys. Rew. lett., 1987,59(8):845-848.
  • 6McDonnell J R, Waagen D. Evolving recurrent perceptions for time series modeling[J]. IEEE Trans. Neural Networks,1994, 5(1): 24-38.
  • 7Gencay R. Nonlinear prediction of noise time series with feedforward network[J]. Phys .Lett. A, 1994,187(6): 397-4O3.
  • 8Casdal M. Nonlinear prediction of chaotic time series[J]. Physica D, 1989, 35(3): 335-356.
  • 9Cao L, Hong Y, Fang H, et al. Predicting chaotic time series using wavelet network[J]. Physica D,1995,85(1): 225-238.
  • 10Takens F, Detecting strange attractors in fluid turbulence, in: Dynamical Systems and Turbulence[C]. Springer,Berlin, 1981.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部