期刊文献+

一种数据驱动的多故障诊断方法研究 被引量:4

On Data Driven Multiple Fault Diagnosis Method
下载PDF
导出
摘要 结合统计建模与物理建模的指定元分析(DCA)有效地避免了主元分析的模式复合问题,从而能用来进行多故障诊断。针对非正交指定模式的处理问题,基于模式分组思想给出一种逐步DCA多故障诊断法,把常见变化模式分为几个正交模式组,然后关于各组指定模式,分别对所得观测数据阵或上一步DCA所得残差矩阵做DCA,逐步诊断各组中的故障是否发生。针对包含6种共存故障的观测数据的仿真研究表明,逐步DCA多故障诊断算法可有效地进行多故障诊断,且无需人为解释诊断结果的物理意义。 Designated component analysis(DCA) which can combine statistic pattern building and physics pattern building can effectively avoid pattern composing problem so as to make fault diagnosis.For orthogonal variation pattern must be designed in advance,a progressive DCA multi-fault diagnosis method is given based on the idea of pattern grouping.Common fault patterns are grouped into orthogonal subgroups,then according to each designated pattern,DCA is implemented on the observation data or the residual.And significance of each fault pattern is computed to identify whether the corresponding fault will occur.Simulation result involving observation datum of 6 coexistent faults show that the DCA multifault diagnosis algorithm can effectively make multi-fault diagnosis without explanation of physical meaning of the diagnosing result.
出处 《控制工程》 CSCD 2008年第4期470-473,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(60572051) 上海市教委创新项目(07ZZ102,08YZ109)
关键词 多故障 故障模式 DCA PCA 故障诊断 multiple faults fault pattern DCA PCA fault diagnosis
  • 相关文献

参考文献9

  • 1Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fauh detection and diagnosis Part Ⅰ: quantitative model-based methods [ J ]. Computers and Chemical Engineering, 2003,27 (3) : 293-311.
  • 2Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fauh detection and diagnosis Part Ⅱ: qualitative model-based methods and search strategies [ J]. Computers and Chemical Engineering, 2003,27(3) :313-326.
  • 3Venkalasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis Part Ⅲ: process history based methods[J]. Computers and Chemical Engineering,2003,27(3):327-346.
  • 4MacGregor J F, Kourtl T. Statistical process control of multivariate procysses[J]. Control Fag Practice, 1995,3(3) :403-414.
  • 5Liu Y G. Statistical control of multivariate processes with applications to automobile body assembly [ D ]. Michigan: University of Michigan, 2002.
  • 6Liu Y G, Hu S J. Assembly fixture fauh diagnosis using designated component analysis[ J]. Transaction of the ASME, 2005,127 (2):358- 368.
  • 7Camelio J A, Hu S J. Multiple fault diagnosis for sheet metal fixtures using designated component analysis[J]. Journal of Manufacturing Science and Engineering, 2004,126( 1 ) :91-97.
  • 8Jackson J E. A user's guide to principal components[ M]. New York: Wiley-Interscience, 1991.
  • 9沈倩,刘育明,梁军.基于DPCA方法的故障检测与诊断分析[J].制造业自动化,2005,27(6):51-53. 被引量:5

二级参考文献5

  • 1刘育明,梁军,钱积新.工业流化床反应器结块监视的动态PCA方法[J].化工学报,2004,55(9):1546-1549. 被引量:12
  • 2MAC G J F, KOURTI T.Statistical process control of multivariate process[J]. Control Engineering Practice, 1995, 3:403 -414.
  • 3KU W,STORER R H ,GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chem. Intell. Lab. Syst, 1995,30: 179-196.
  • 4CHANGKYU L, SANG W C, LEE I B. Sensor fault identification based on time-lagged PCA in dynamic process[J].Chemometrics and Intelligent Laboratory Systems ,2004,70:165-178.
  • 5WEIHUA L, QIN S J. Consistent dynamic PCA based on errors-in-variables subspace identification[J]. Journal of Process Control, 2001,11:661 - 678.

共引文献4

同被引文献18

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部