摘要
有序加权调和平均(OWH)算子是一种对离散性的数据进行集成的方法.本文首先把OWH算子推广到了连续区间上,提出了连续的区间数据OWH(C-OWH)算子,然后在此基础上提出了加权调和的C-OWH算子,有序加权C-OWH算子以及组合的C-OWH算子等新的概念,探讨了它们的一些性质.最后举例说明了这些算子在不确定多属性群决策中的应用,结果表明该方法是可行的.
Ordered weighted harmonic (OWH) averaging operator was a kind of method for aggregating discrete arguments. In this paper, we proposed continuous interval argument OWH (C-OWH) operator for aggregating continuous interval argument on the basis of ordered weighted harmonic averaging operator. Based on C-OWH operator, we proposed some new concepts, such as weighted harmonic C-OWH (WHC-OWH) operator, ordered weighted harmonic averaging C-OWH (OWHC-OWH) operator, combined C-OWH (CC-OWH) operator, and we discussed some properties of these operators. Finally an illustrative example was given to use these operators in the range of uncertain multi-attribute group decision-making. The results showed that the method proposed in this paper was feasible.
出处
《系统工程理论与实践》
EI
CSCD
北大核心
2008年第7期86-92,99,共8页
Systems Engineering-Theory & Practice
基金
国家自然科学基金(70571001)
安徽省自然科学基金(070416245)
安徽高等学校省级教学研究项目(2007jyxm177)
安徽省高校青年教师资助项目(2007jq1017)
安徽大学人才队伍建设资助项目
安徽大学研究生创新计划资助项目(20073037)
安徽省优秀青年科技基金(08040106835)