期刊文献+

修剪Bagging集成的方法及其应用 被引量:7

A method for pruning Bagging ensembles and its applications
原文传递
导出
摘要 针对回归问题,通过对bagging集成中的每个个体进行重新排序给出了一种修剪bagging集成的方法.该方法使用回归树作为基学习机,从排序后的回归树中选择一部分预测性能较好的个体构建集成.试验结果表明,基于排序后的大约20%的个体构建的集成除了占用较少的存储空间和具有较快的预测速度外,其预测性能也比基于所有的个体构建的集成好. This paper presents a novel pruning method based on reordering the regressors generated by bagging, which adopts the regression tree as the base learner and selects a subset of the ordered regressors that have good prediction accuracy to construct the pruned ensemble. The experimental results show that the primed ensemble containing about 20% of the initial pool of regressors, besides being smaller and having faster execution speed, performs better than or as well as the full hagging ensemble in the investigated regression problems.
作者 李毓 徐成贤
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第7期105-110,共6页 Systems Engineering-Theory & Practice
基金 河南省软科学研究项目(072400421600)
关键词 机器学习 集成学习 Bagging集成 回归树 修剪集成 machine learning ensemble learning Bagging ensemble regression tree primed ensemble
  • 相关文献

参考文献14

  • 1Breiman L. Bagging predictors[ J]. Machine Leaming, 1996,24(1) : 123 - 140.
  • 2Breiman L. Random forests[J]. Machine Learning, 2001, 45(1) :5 - 32.
  • 3Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and application to boosfing[J]. Journal of Computer and System Sciences, 1997, 55( 1 ) : 119 - 139.
  • 4Ho T K. The random subspace method for comtrucfing decision forests[J], lEEK Transactiom on Pattern Analysis and Machine Intelligence, 1998, 20(8) : 832- 844.
  • 5Optiz D, Maclin R. Popular ensemble methods: An empirical study[J]. Journal of Artificial Intelligence Research, 1999, 11:169 - 198.
  • 6Meir R, Ratch G. An introduction to boosting and leveraging[J] .Lecture Notes in Computer Science, 2003, 2600:118 - 183.
  • 7Efron B, Tibshirani R. An Introduction to the Bootstrap[ M]. NewYork: Chapman Hall, 1993.
  • 8Bakker B, Heskes T. Clustering ensembles of neural networks[J] .Neural Networks, 2003, 16(2) :261 - 269.
  • 9Martinez-munoz G, Suarez A. Priming in ordered bagging ensembles[C]//Pmceedings of the 23th International Conference on Machine Leaming, Pittsburgh, PA, 2006, 609- 616.
  • 10Martinez-munoz G, Suarez A. Using boosting to prune bagging ensembles[ J]. Pattern Recognition Letters, 2007, 28( 1):156- 165.

同被引文献144

  • 1贾富仓,李华.基于随机森林的多谱磁共振图像分割[J].计算机工程,2005,31(10):159-161. 被引量:14
  • 2李雪峰,刘鲁,吴丽花.在线拍卖商品最终成交价格预测[J].计算机工程,2006,32(18):189-191. 被引量:6
  • 3王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 4Wood C A. What factors drive final price in Internet auctions? An empirical assessment of coin transactions on eBay[C]// Annual Convention of the Institute for Operations Research and the Management Sciences. Miami Beach, Fla, 2001.
  • 5Bryan D, Lucking-Reiley D, Prasad N, et al. Pennies from eBay: The determinants of price in online auctions[J]. Journal of Industrial Economics, 2007, 55(2): 223 233.
  • 6Kauffman J, Wood C A. The effects of shilling on final bid prices in online auctions[J]. Electronic Commerce Research and Applications, 2005(4): 21 34.
  • 7Srinivas K R, Mayukh D. Modeling on-line art auction dynamics using functional data analysis[J]. Statistical Science, 2006, 21(2): 179 193.
  • 8Wang S S, Jank W, Shmueli G. Explaining and forecasting online auction prices and their dynamics using functional data analysis[J]. Journal of Business & Economic Statistics, 2008, 26(2): 144-160.
  • 9Ghani R, Simmons H. Predicting the end-price of online auctions[C]//Proceedings of International Workshop on Data Mining and Adaptive Modelling Methods for Economics and Management Held in Conjunction with the 15th European Conference on Machine Learning. Italy: Pisa, 2004.
  • 10Heijst D V, Potharst R, Wezel M V. A support system for predicting eBay end prices[J]. Decision Support Systems, 2008, 44(4): 970-982.

引证文献7

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部