期刊文献+

基于SOFM和遗传算法的定量数据规则提取

Rule induction from quantitative data based on SOFM and genetic algorithm
原文传递
导出
摘要 提出一种基于自组织特征映射网络(SOFM)和遗传算法的定量数据规则提取模型.首先利用自组织特征映射网络SOFM,把定量数据转换为模糊集的语义值,用模糊集合相似性分析与融合对初始的模糊区间进行约简,以提高其解释性.然后利用变精度粗糙集模型从中挖掘模糊分类规则.最后利用遗传算法对所得规则进行优化,在不降低精确性的前提下,减少规则数.选用UCI数据集中的数据进行测试,证明所提模型用于定量数据规则提取的有效性. A rule induction model based on self-organizing feature map (SOFM) and genetic algorithm is proposed for quantitative data. Each quantitative value is first transformed into a fuzzy set of linguistic terms using SOFM and the similarity analysis and merging of fuzzy sets is used to reduct the initial fuzzy regions for enhancing the interpretability. Then variable precision rough set model is used to mine fuzzy classification rules. Finally, genetic algorithm is used to optimize the rules and reduce the rule numbers without depressing the precision. UCI database is selected to demonstrate that the new mndel is valid for rule induction from quantitative data.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2008年第7期150-154,164,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(60273043) 安徽省高校拔尖人才基金(05025102) 安徽省自然科学基金(050420204)
关键词 定量数据 自组织特征映射网络 变精度粗糙集 遗传算法 quantitative data self-organizing feature map variable precision rough set genetic algorithm
  • 相关文献

参考文献14

  • 1Hong T P, Wang T T, Wang S L. Mining fuzzy β-certain and β-possible rules from quantitative data based on the variable precision rough-set model[J]. Expert Systems with Applications,2007, 32:223- 232.
  • 2Jin Y. Advanced Fuzzy Systems Design and Applications[M]. New York: Physical-Veil, 2003.
  • 3Nauck D D. Fuzzy data analysis with NEFCLASS[J]. International Journal of Approximate Reasoning, 2003, 32(23):103- 130.
  • 4邢宗义,张永,侯远龙,贾利民.基于模糊聚类和遗传算法的具备解释性和精确性的模糊分类系统设计[J].电子学报,2006,34(1):83-88. 被引量:8
  • 5Hsieh K L, Jeng C C, Yang I C, et al. The study of applying a systematic procedure based on SOFM clustering technique into organism clustering[J]. Expert Systems with Applications, 2007, 33(2):330- 336.
  • 6Chou H C, Cheng C H, Chang J R. Extracting drug utilization knowledge using self-organizing map and rough set theory[J]. Expert Systems with Applications, 2007, 33(2):499-508.
  • 7Lee K C, Cho H R, Kim J S. A self-organizing feature map-driven approach to fuzzy approximate reasoning[J]. Expert Systems with Applications, 2007, 33(2):509-521.
  • 8Kohonen T. Self-Orgaruzation Maps[M]. Berlin Heidelberg: Springer-Verlag, 2000.
  • 9Setnes M, Babuska R, Kaymak U, et al. Similarity measures in fuzzy nile base simp-lification[J]. IEEE Tram on Systems Man and Cybemetics Part B, 1998, 28(3):376- 386.
  • 10Riyaz S, Selwyn P. Framework for efficient feature selection in genetic algorithm based data mining[J]. European Journal of Operational Research, 2007, 180(2) :723 - 737.

二级参考文献25

  • 1Rivera F F,Zapata E L,Carazo J M.Cluster validity based on the hard tendency of the fuzzy classification[J].Pattern Recognition Letters.1990,11(1):7-12.
  • 2Gath I,Geva A B.Fuzzy clustering for the estimation of the parameters of the components of mixtures of normal distributions[J].Pattern Recognition Letters.1989,9(2):77-86.
  • 3Setnes M,Babuska R,Kaymak U,Lemke H R N.Similarity measures in fuzzy rule base simplification[J].IEEE Trans on Systems Man and Cybernetics Part B.1998,28(3):376-386.
  • 4Wang J S,Lee G.C S.Self-adaptive neuro-fuzzy inference system for classification application[J].IEEE Trans.Fuzzy System.2002,10(6):790-802.
  • 5Wu T P,Chen S M.A new method for constructing membership functions and fuzzy rules from training examples[J].IEEE Trans System Man Cybernetic Part B.1999,29(1):25-40.
  • 6Russo M.Genetic fuzzy learning[J].IEEE Trans.Evolutionary Computation.2000,4(3):259-273.
  • 7Kuncheva L I.Fuzzy Classifier Design (Studies in Fuzziness and Soft Computing)[M].New York:Heidelberg,2000.
  • 8Abe S,Thawonmas R.A fuzzy classifier with ellipsoidal regions[J].IEEE Trans.Fuzzy Systems,1997,5(3):358-368.
  • 9Shi Y,Eberhart R,Chen Y.Implementation of evolutionary fuzzy system[J].IEEE Trans.Fuzzy Systems,1999,7(2):109-119.
  • 10Castellano G,Fanelli1 A M.Modeling fuzzy classification systems with compact rule base[A].1999 International Conference on Computational Intelligence for Modeling,Control and Automation[C].Vienna,Austria:IOS Press,1999:287-292.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部