期刊文献+

基于社会网络可视化分析的数据挖掘(英文) 被引量:14

Networked Data Mining Based on Social Network Visualizations
下载PDF
导出
摘要 把社会等复杂系统看作网络的思想由来已久.利用社会网络分析的方法,能够对各种社会关系进行精确的量化表征和分析。从而揭示其结构,对一系列当代社会的现象进行更加深入而具体的解释.结合社会网络可视化分析和数据挖掘的理论与方法,引入相关的地理信息,对包含1980-2002年间世界范围内1417例恐怖袭击事件的数据库进行数据分析,以这些恐怖袭击事件各要素节点之间关系作为基本分析单位,对恐怖组织之间的活动模式和发展特点等内在规律进行挖掘与解释,得出有意义的结果.提出的方法可以有效地推广应用于蛋白质结构分析、生物基因分析以及各类社会问题的分析过程. Studies in social network theory focus on characterizing complex social relationships by firstly mapping and visualizing them into a graph, and then subsequently identifying the corresponding graph properties. This paper provides an integrated approach, which combines social network analysis and data mining theory with the necessary geographical attributes to analyze 1417 instances of terrorism that occurred world wide during the period 1980-2002. The study reveals interesting patterns on the evolution of these terrorist organizations over two decades. The proposed method can be easily generalized to be applied to other types of large-scale networked datasets, such as micro-array data, and genomic networked data, etc.
出处 《软件学报》 EI CSCD 北大核心 2008年第8期1980-1994,共15页 Journal of Software
基金 Supported in part by the Key Program of the National Natural Science Foundation of China under Grant Nos.60723003,60505008 in part by the Natural Science Foundation of Jiangsu Province of China under Grant Nos.BK2007520,BK2006116 in part by the Australian Research Council(ARC)Centre for Complex Systems under Grant No.CEO0348249~~
关键词 社会网络分析 数据挖掘 网络动态模式 网络发展模式 social network analysis data mining network dynamics network evolution
  • 相关文献

参考文献21

  • 1Fayyad U, Piatetsky-Shapiro G, Smyth P. Knowledge discovery and data mining: Towards a unifying framework. In: Fayyad U,Piatetsky-Shapiro G, Smyth P, Uthurusamy R, eds. Advances in Knowledge Discovery and Data Mining. AAI/MIT Press, 1996. 1-36.
  • 2Staab S. Social networks applied. IEEE Intelligent Systems, 1986,124:317-28.
  • 3Kao H, Lin S, Ho J, Chen M. Entropy-Based link analysis for mining Web informative structures. In: Proc. of the 11th ACM CIKM 2002. New York: ACM Press, 2002. 574-581.
  • 4Taskeru B, Wong M, Abbeel P, Koller D. Label and link prediction in relational data. In: Gottlob G, Walsh T, eds. IJCAI Workshop on Learning Statistical Models from Relational Data. Morgan Kaufmann Publishers, 2003.
  • 5Barlow M, Galloway J, Abbass HA. Mining evolution through visualization. In: Beyond Fitness: Visualising Evolution, a Workshop at the 8th Int'l Conf. on the Simulation and Synthesis of Living Systems (ALife 8). MIT Press, 2002. 103-111.
  • 6Albert R, Barabasi A, Statistical mechanics of complex networks. Reviews of Modem Physics, 2002,74:47-97.
  • 7Albert H JR, B arabasi A. Diameter of the world wide web. Nature, 1999,401:130-131.
  • 8Wu A, Garland M, Han J. Mining scale-free networks using geodesic clustering. In: Kim W, Kohavi R, Gehrke J, DuMouchel W, eds. Proc. of the 10th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2004. 719-724.
  • 9Software SS. Sampling methods, http://www.statpac.com/surveys/sampling.htm. accessed 2006-08-12.
  • 10Watters J, Biernacki E Targeted sampling: Options for the study of hidden populations. Social Problems, 1989,36(4):416-430.

同被引文献147

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部