期刊文献+

On the Acceleration Problem of q-Bernstein Polynomials 被引量:1

On the Acceleration Problem of q-Bernstein Polynomials
下载PDF
导出
摘要 In this paper, we investigate not only the acceleration problem of the q-Bernstein polynomials Bn(f, q; x) to B∞ (f, q; x) but also the convergence of their iterated Boolean sum. Using the methods of exact estimate and theories of modulus of smoothness, we get the respective estimates of the convergence rate, which suggest that q-Bernstein polynomials have the similar answer with the classical Bernstein polynomials to these two problems.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第2期252-259,共8页 数学季刊(英文版)
关键词 q-Bernstein polynomial ACCELERATION iterated Boolean sum convergence rate q-Bernstein多项式 加速问题 解题方法 数学分析
  • 相关文献

参考文献7

  • 1PHILLIPS G M. Bernstein polynomials based on the q-integers[J]. Ann Numer Math, 1997. 4: 511-518.
  • 2OSROVSKA Sofiya. q-Bernstein polynomials and their iterates[J]. J Approx Theory, 2003. 123: 232-255.
  • 3GONSKA H H, ZHOU X L. Approximation theorems for the iterated Boolean sums of Bernstein operators [J]. J Comput Appl Math, 1994. 53: 21-23.
  • 4VIDENSKII V S. On some classes of q-parametric positive linear operators[J]. Oper Theory Adv Appl, 2005, 158: 213-222.
  • 5IL'INSKII A, OSTROVSKA S. Convergence of generalized Bernstein polynomials [J]. J Approx Theory, 2002, 116: 100-112.
  • 6WANG He-ping. The rate of convergence of q-Bernstein polynomials for 0 < q < 1[J]. J Approx Theory, 2005,136: 151-158.
  • 7WANG He-ping. Voronovskaya-tpye formulas and saturation of convergence for q-Bernstein polynomials for 0 < q < 1[J]. J Approx Theory, 2007, 145: 182-195.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部