期刊文献+

井点抽水时饱和分层地基的传递矩阵解

TRANSFER MATRIX SOLUTIONS FOR SATURATED MULTI-LAYERED SOIL DUE TO PUMPING FROM WELL POINT
下载PDF
导出
摘要 从直角坐标系下三维Biot固结问题控制方程出发,引入位移函数,并对各个变量进行关于时间t的Laplace变换和关于x、y的双重Fourier变换,得到了z=z处和z=0处的8×8传递矩阵;根据各土层间以及井点抽水作用处的连续条件、边界条件,并结合传递矩阵的性质和Laplace-Fourier逆变换技术,求得井点抽水时饱和分层地基的真实解答。数值计算结果表明,随着井点抽水时间的增加,饱和多层地基的地表位移逐渐增大。 Starting from the governing equations of Biot three dimensional consolidation problem and introducing the displacement functions, the 8 order transfer matrix between z =z and z=0 is obtained by taking the Laplace transform with respect to time (t) and the double Fourier transform with respect to coordinate x and y. According to the continuity conditions between adjacent layers and the horizon plane of well point pump and boundary conditions, the actual solutions of multi-layered soil due to pumping from well point are obtained by using the transfer matrix properties and the techniques of the Laplace-Fourier inverse transforms. Numerical results show that the surface settlement of saturated multi-layered soil increases with the increase of time.
作者 艾智勇 吴超
出处 《工业建筑》 CSCD 北大核心 2008年第7期58-61,134,共5页 Industrial Construction
基金 国家自然科学基金资助项目(50578121)
关键词 井点抽水 BIOT固结 位移函数 传递矩阵 Laplace-Fourier变换 饱和分层地基 pumping from well point Biot consolidation displacement functions transfer matrix Laplace-Fouriertransform saturated multi-layered soil
  • 相关文献

参考文献13

  • 1Blot M A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys, 1941, 12(2): 155- 164.
  • 2B~ker J R, Carter J P. Analysis of a Point Sink Embedded in a Porous Elastic Half Space. Int. J. Numer. Anal. Meth. Geomech, 1986, 10 (2) : 137- 150.
  • 3Booker J R, Carter J P. Elastic Consolidation Around a Point Sink Embedded in a Half-Space with Anisotropic Permeability. Int. J. Numer. Anal. Meth. Geomech, 1987, 11(3): 61-77.
  • 4Worsak K N, Chau K T. Point Sink Fundamental Solutions for Subsidence Prediction. Journal of Engineering Mechanics, 1990, 116 (5): 1176- 1182.
  • 5Tara J Q, Lu c c. Analysis of Subsidence due to a Point Sink in an Anisotropic Porous Elastic Half Space. Int. J. Numer. Anal. Meth.Geomech, 1991, 15(4): 573 - 592.
  • 6Chau K T. Fluid Point Source and Point Forces in Linear Elastic Diffusive Half-Spaces. Mechanics of Materials, 1996, 23 (3) : 241 - 253.
  • 7Lu J F, Hanyga A. Fundamental Solution for a Layered Porous Half Space Subjected to a Vertical Point Force or a Point Fluid Source. Comput Mech, 2005,35 : 376 - 391.
  • 8Chen G J. Analysis of Pumping in Multi-layered and Poroelasfic Half Space. Computers and Geotechnics, 2003, 30:1 -26.
  • 9C-hen G J. Steady-State Solutions of Multilayered and Cross-Anisotropic Poroelastic Half-Space due to a Point Sink. International Journal of Geomechanics, 2005, 5(1): 45 - 57.
  • 10Verruijt A. Displacement Functions in the Theory of Consolidation or Thermoelasticity. J. Appl. Math. Phys, 1971, 22: 891- 898.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部