期刊文献+

不同pH值条件下镍对大麦的急性毒性 被引量:7

Effect of pH on nickel acute toxicity to barley(Hordeum vulgare)
下载PDF
导出
摘要 采用水培实验,研究不同pH值条件下镍对大麦的急性毒性.结果表明,当溶液pH值从4.5增加到8.3,以Ni2+活度表示的大麦根伸长的半抑制浓度[EC50(Ni2+)]降低了86%.基于生物配体模型理论方程的线性分析表明,pH值改变引起的EC50(Ni2+)的变化不完全是H+竞争的作用.在形态分析的基础上,采用剂量效应方程对数据进行了拟合,同时考虑了Ni2+和NiCO3毒性以及H+竞争后,显著提高了方程的拟合程度,预测和实测大麦根伸长也具有较好的相关性(R2=0.95).因此,pH值的改变导致H+与生物配体(大麦根)结合的Ni2+竞争,并引起Ni2+向NiCO3形态的转化. The effect of pH on the acute toxicity of nickel to barley root elongation was investigated in solution culture. The effective concentrations,which reduced root elongation by 50%,based on free Ni^2+ activity(EC50(Ni^2+)) reduced about 10 times when pH was from 4.5 to 8.3. Based on biotic ligand model theory,the nonlinear relationship between EC50(Ni^2+) and H^+ activity in this study indicated that the increased toxicity with increasing pH was not only due to decreasing H^+ competition. The logistic dose-response curve showed that considering the H+ competition and NiCO3 plus Ni^2+ as the dose improved the data fit significantly(R^2=0.95) than only the free Ni^2+ activity was considered. Thus,the effects of pH on nickel acute toxicity to barley need to consider H^+ competition for biotic ligand(barley root) and NiCO3 transformed from free Ni^2+.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2008年第7期640-645,共6页 China Environmental Science
基金 国家自然科学基金资助项目(20677077,40620120436) 国际铜业协会、国际镍业协会和国际力拓集团联合资助项目
关键词 碳酸镍 pH值 生物配体模型(BLM) nickel nickelous carbonate pH biotic ligand model(BLM)
  • 相关文献

参考文献22

  • 1王学东,马义兵,华珞,韦东普,李波.环境中金属生物有效性的预测模型——生物配体模型研究进展[J].生态毒理学报,2006,1(3):193-202. 被引量:16
  • 2McLaughlin M J, Tiller K G, Smart M K. Speciation of cadmium in soil solutions of saline-sodic soils and relationship with cadmium concentrations in potato tubers (Solanum tuberosum L) [J]. Aust. J. Soil. Res., 1997,35:183-198.
  • 3Zhao F J, Rooney C P, Zhang H, et al. Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants [J] Environ. Toxicol. Chem., 2006,25(3):733-742.
  • 4Li P W, Wolthoom A, Theo M, et al. Understanding the effects of soil characteristics on phytotoxicity and bioavailability of nickel using speciation models [J]. Environ. Sci, Teclmol., 2004,38(1): 156-162.
  • 5Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil [J]. Environ. Sci. Technol., 2006,40(22):7094-7100.
  • 6Pane E F, Richards J G, Wood C M. Acute waterborne nickel toxicity in the rainbow trout (Oncorhynchus mykiss) occurs by a respiratory rather than an ionoregulatory mechanism [J]. Aquat. Toxicol., 2003,63(1):65-82.
  • 7Lofts S, Tipping E. Windermere humic aqueous modelequilibrium chemical speciation for natural waters-Version 6.0.8. [M]. CEH Windermere, Ferry House, Far Sawrey, Ambleside, Cumbria: Centre for Ecology and Hydrology, 2002.
  • 8Lock K, De Schamphelaere K A C, Becaus S, et al. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare) [J]. Environ. Poll., 2007,147(3):626-633.
  • 9Lock K, Van Eeckhout H, De Schamphelaere K A C, et al. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare) [J]. Chemosphere, 2007, 66(7)- 1346-1352.
  • 10Oorts K, Ghesquiere U, Swinnen K, et al. Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil microbial processes in freshly spiked soils [J]. Environ. Toxicol. Chem., 2006,25(3): 836-844.

二级参考文献66

  • 1LUO Xiao-san,ZHOU Dong-mei,WANG Yu-jun.Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China[J].Journal of Environmental Sciences,2006,18(5):927-931. 被引量:4
  • 2王学东,马义兵,华珞,韦东普,李波.环境中金属生物有效性的预测模型——生物配体模型研究进展[J].生态毒理学报,2006,1(3):193-202. 被引量:16
  • 3[1]Alsop D H,Wood C M.2000.A kinetic analysis of zinc accumulation in the gills of juvenile Rainbow trout:The effects of zinc acclimation and implications for biotic ligand modeling[J].Environ Toxicol Chem,19:1911-1918
  • 4[2]Antunes P M C,Berkelaar E B,Boyle D,Hale B A,Hendershot W,Voigt A.2006.The biotic ligand model for plants and metals:Technical challenges for field applications[J].Environ Toxicol Chem,25:875-882
  • 5[3]Bingham F T,Strong J E,Sposito G.1983.Influence of chloride salinity on cadmium uptake by Swiss chard[J].Soil Sci,35:160-165
  • 6[4]Buffle J.1988.Complexation reaction in aquatic systems:An analytical approach[M].Chichester:Eills Horwood,692
  • 7[5]Bury N R,Shaw J,Glover C,Hogstrand C.2002.Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates[J].Comp Biochem Physiol C,133:259-270
  • 8[6]Campbell P G C.1995.Interactions between trace metals and aquatic organisms:A critique of the free-ion activity model[M].In:Tessier A,Turner D R (Eds.).Metal speciation and bioavailability in aquatic systems.New York:John Wiley and Sons,45-102
  • 9[7]De Schamphelaere K A C,Heijerick D G,Janssen C R.2002a.Refinement and field:Validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna[J].Comp Biochem Physiol C,133:243-258
  • 10[8]De Schamphelaere K A C,Janssen C R.2002b.A biotic ligand model predicting acute copper toxicity for Daphnia magna:The effects of calcium,magnesium,sodium,potassium,and pH[J].Environ Sci Technol,36:48-54

共引文献24

同被引文献152

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部