期刊文献+

恒壁温下梯形硅微通道热沉流动换热特性 被引量:6

Heat transfer in trapezoidal silicon microchannel heat sinks with constant wall temperature
下载PDF
导出
摘要 建立了恒壁温条件下微通道中层流流动换热的三维模型,对水力直径分别为108,160和200μm的梯形硅微通道内单相流动换热特性进行了数值模拟研究.研究结果表明:在恒壁温条件下,通道入口段Nu数最大,并沿流程逐渐减小,直至达到充分发展时,Nu数趋于定值;与大管道经典理论不同,充分发展段Nu数随Re数的增加而增加;通道尺度的减小能有效强化换热;恒壁温条件下的平均Nu数总是低于恒热流条件下平均Nu数.同时,对流动阻力损失的研究发现,Poiseuille数与经典值基本吻合. A three-dimensional model with constant wall temperature condition has been developed to simulate the laminar convective heat transfer in trapezoidal silicon microchannels, which have hydraulic diameter of 108, 160 and 200 μm respectively. The simulation results indicate that the Nu number has a much higher value near the channel inlet and decreases along the flow direction, approaching a constant value at the fully developed region. Different from the conventional theory, the Nu number at the fully developed region in microchannels increases with the increase of Re number. The heat transfer will be enhanced by the decrease of the channel diameter. The average Nu number at constant wall temperature is always lower than that at constant heat flux condition. Pressure drop is also analyzed. It is indicated that Poiseuille number is almost the same as the classical value.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期647-650,共4页 Journal of Southeast University:Natural Science Edition
基金 霍英东青年教师基金资助项目(101055) 教育部新世纪优秀人才计划资助项目 高等学校博士学科点专项科研基金资助项目
关键词 梯形微通道 传热 阻力损失 数值模拟 trapezoidal microchannel heat transfer pressure drop numerical simulation
  • 相关文献

参考文献10

  • 1Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI [ J ] IEEE Electron Dev Lett, 1981, EDL-2 ( 5 ) : 126 - 129.
  • 2Fedorov A G, Viskanta R. Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging [ J ]. International Journal of Heat Mass Transfer, 2000,43(3 ) :399 - 415.
  • 3Li Z, Tao W Q, He Y L. A numerical study of laminar convective heat transfer in microchannel with non-circu- lar cross-section [ J ]. International Journal of Thermal Sciences,2006,45(12) : 1140 - 1148.
  • 4Rahman M M, Gui F J. Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate [ C ]//Advances in Electronic Packaging, ASME EEP. New York, USA, 1993 : 685 - 692.
  • 5Rahman M M, Gui F J. Design, fabrication, and testing of microchannel heat sink for aircraft avionics cooling [ C ]//Proceedings of the lntersociety Energy Conversion Engineering Conference. Atlanta, USA, 1993,1 : 1-6.
  • 6Qu W, Mala G M, Li D. Pressure-driven water flows in trapezoidal silicon microchannels [ J ]. International Journal of Heat Mass Transfer, 2000,43 ( 3 ) : 353 - 364.
  • 7Qu W, Mala G M, Li D. Heat transfer for water flow in trapezoidal silicon microchannels [ J ]. International Journal of Heat Mass Transfer, 2000,43 ( 21 ) : 3925 - 3936.
  • 8Zhao C Y, Lu T J. Analysis of microchannel heat sinks for electronics cooling [ J ]. International Journal of Heat Mass Transfer, 2002,45 ( 24 ) :4857 - 4869.
  • 9Kroeker C J, Soliman H M, Ormiston S J. Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels [ J ]. International Journal of Heat Mass Transfer, 2004, 47(22): 4733-4744.
  • 10Shah R K. Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry [ J ]. International Journal of Heat and Mass Transfer, 1975, 18 ( 7/8 ) : 849 - 862.

同被引文献70

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部