期刊文献+

轴向电场对纳米管道中溶液离子径向分布的影响 被引量:1

Influence of axial applied potential gradient on ion radial distribution in liquid confined in cylindrical nanotubes
下载PDF
导出
摘要 用分子动力学模拟的方法,研究了轴向外加电场强度对圆柱形纳米管道中NaCl溶液离子径向密度分布的影响.仿真结果表明,纳米管道两端的外加电场强度增大时,系统的瞬时动能增加.离子获得较大的径向动能就可以克服所在位置势能束缚,运动到使原来浓度峰值减小的径向位置,以保证系统的自由能减小,从而导致离子径向浓度峰值变小.壁面电荷密度越小,离子受到壁面电荷的束缚就越小,这一现象越明显.由于离子的径向分布对电渗流有直接影响,因此这一仿真对电渗流的理论研究和利用外电场实现离子分离的纳流体器件的设计具有重要的参考价值. The effect of an axial applied potential gradient on the ion distribution of sodium chlorine solution confined in cylindrical nanotubes is investigated with a molecular dynamics simulation model. The simulation results indicate that with the axial applied potential gradient increasing the instantaneous kinetic energy of the system enhances. Obtaining higher radial instantaneous energy, the ions escape from their position and move to other place to reduce the free energy of the system. Thus the peak value of the ion radial density is decreased. With lower surface charge density this phenomenon is more evident. Since the ion radial distributions in liquid directly affect the electroosmotic flow, this study is useful for electroosmotic flow research and the design of nanofluidic devices for species separation by applied potential gradient.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期683-686,共4页 Journal of Southeast University:Natural Science Edition
基金 国家重大基础研究发展计划(973计划)资助项目(2006CB300404) 国家自然科学基金资助项目(50676019,50506008,50505007) 江苏省自然科学基金资助项目(BK2006510,BK2007113)
关键词 分子动力学模拟 纳米管道 外加电场强度 离子分布 molecular dynamics simulation nanotube applied potential gradient ion distribution
  • 相关文献

参考文献10

  • 1Zhu Wei, Singer Sherwin J, Zheng Zhi, et al. Electroosmotic flow of a model electrolyte [ J ]. Phys Rev E, 2005, 71(14) : 041501.
  • 2Liu Shaorong, Pu Qiaosheng, Byun C K, et al. Probing zeta potential in flat nanochannels [ J ]. Phys Chem C, 2007, 111(29) :10818 - 10823.
  • 3Chen Yunfei, Ni Zhonghua, Wang Guiming, et al. Electroosmotic flow in nanotubes with high surface charge densities [J]. Nano Lett, 2008,8( 1 ) :42 -48.
  • 4Qiao R, Aluru N R. Multiscale simulation of electroosmotic transport using embedding techniques [ J ]. Int J for Multiscale Comp Eng, 2004,2(2) : 173 - 188.
  • 5Qiao R, Aluru N R. Ion concentration and velocity profiles in nanochannel electroosmotic flows [ J ]. Chem Phys, 2003, 118( 10): 4692-4701.
  • 6Karnik R, Fan Rong, Yue Min, et al. Elecrostatic control of ions and molecules in nanofluidic transistors [ J]. Nano Lett ,2005,5 ( 5 ) :943 - 948.
  • 7Cheng Lijing, Guo L Jay. Rectified ion transport through concentration gradient in homogeneous silica nanochannels [J]. Nano Lett, 2007,7 (10) : 3165 - 3171.
  • 8Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels [ J ]. Phys Rev Lett, 2004, 93(3) : 035901.
  • 9Cui S T, Cochran H D. Molecular dynamics simulation of interfacial electrolyte behaviors in nanoscale cylindrical pores [ J ]. Chem Phys, 2002, 117 (12) : 5850 - 5854.
  • 10Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath [J], Chem Phys, 1984, 81(8) :3684 -3690.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部