期刊文献+

交通分布预测模糊重力模型 被引量:16

Fuzzy gravity model of traffic distribution forecast
下载PDF
导出
摘要 为了解决交通分布预测中的模糊不确定性,以重力模型与模糊数学理论和方法为基础,基于三角模糊数建立了模糊重力模型.采用模糊线性最小二乘法标定了模型中参数.利用模糊幅度对观测值的比、观测值与估计值的隶属函数的不重合部分的面积与其面积之和的比这2种方法进行模型精度检验.研究了实现交通分布预测结果的发生、吸引平衡处理的模糊Frator增长率迭代平衡方法.通过实例详细说明了发生量、吸引量和交通阻抗均具有模糊不确定性时的模糊重力模型的应用过程,提出了根据模糊不确定性大小程度来利用模糊预测值的建议.模糊重力模型可以实现交通分布预测中的模糊不确定性. In order to solve the fuzzy uncertainty of the traffic distribution, using the gravity model and fuzzy mathematics theory, a fuzzy gravity model is established based on the triangular fuzzy number. The parameters are calibrated by the fuzzy linear least-squares regression method. Two methods are used to test the model accuracy through the ratio of fuzzy magnitude to observation value and the ratio of the un-overlapped area of the observations and estimated subjection function to the sum area of the two. Research on fuzzy Frator iterative approach is made to balance the production-attraction results of traffic distribution forecast. Finally, an example is shown to validate the model practicability when production-attraction and traffic impedance values are uncertain. Discussion about how to use the fuzzy forecast results according to the fuzzy uncertainty degree is also presented. The fuzzy gravity model can realize fuzzy uncertainty of the traffic distribution prediction.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第4期727-731,共5页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2005CB724205) 国家自然科学基金资助项目(50778141)
关键词 交通分布 模糊重力模型 三角模糊数 模糊最小二乘法 traffic distribution fuzzy gravity model triangular fuzzy number fuzzy least-squares method
  • 相关文献

参考文献9

二级参考文献23

  • 1邵昀泓,程琳,王炜.最大熵模型在交通分布预测中的应用[J].交通运输系统工程与信息,2005,5(1):83-87. 被引量:15
  • 2饭田恭敬.交通工程学[M].人民交通出版社,1994.10.
  • 3周商吾.佛山市居民出行调查分析报告[R].上海:同济大学交通运输工程学院,2003..
  • 4周商吾.太原市交通规划第二篇—调查分析报告[R].上海:同济大学道路与交通工程研究所,1996..
  • 5HAI YANG,S C WONG.A Network Model of Urban Taxi Services[J].Transp.Res.-B,1998(32):235-246.
  • 6SHEFFI YOSEF.Urban Transportation Networks:Equilibrium Analysis With Mathematical Programming Methods[M].Englewood Cliffs,N.J.:Prentice-Hall,Inc.,1985.
  • 7Tanaka H,Uejima S,Asai K.Linear regression analysis with fuzzy model[J].IEEE Trans Systems Man Sybernetrics,1982,12(6):903.
  • 8Diamond P.Fuzzy least squares[J].Information Science,1988,46:141~157.
  • 9Celmins A.Least squares model fitting to fuzzy vector data[J].Fuzzy Sets and Systems,1987,22:245~269.
  • 10Wunsche A,Nather W.Least squares fuzzy regression with fuzzy random variables[J].Fuzzy Sets and Systems,2002,130:43~50.

共引文献42

同被引文献157

引证文献16

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部