期刊文献+

Timoshenko梁在热冲击下的瞬态动力响应 被引量:4

TRANSIENT DYNAMIC RESPONSE OF TIMOSHENKO BEAMS UNDER THERMAL SHOCK
下载PDF
导出
摘要 研究了矩形截面简支Timoshenko梁在热冲击载荷作用下的动力响应。首先由分离变量法求得了梁的温度响应,然后采用微分求积法(DQM)分别对位移形式的动力学方程及初边值条件在空间域和时间域进行离散。数值求解离散后的代数方程组,得到了梁在热冲击下的动态位移和应力响应。分析了相关物理和几何参数对动态位移响应和动态应力响应的影响,考察了数值结果的收敛性。数值结果表明,对该类问题采用DQ法求解具有简洁可靠、计算效率高的特点。 Transient dynamic response of Timoshenko beams with rectangular cross sections subjected to thermal shock was studied. The temperature rise response of the beam was obtained with the method of variables separation. Then, the dynamic equations associated with the boundary and initial conditions in terms of the beam displacements were discretized both in spatial and time domains by using differential quadrature method (DQM). Dynamic responses of the transverse displacement and the normal stresses of the beam under thermal shock were attained by solving the discrete algebraic equations numerically. Effects of the physical and geometrical parameters on the thermal shock responses were analyzed and convergence of the numerical result was also examined. Numerical results show that DQM is simple, effective and reliable in dealing with the thermal shock problem of elastic beams.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第7期122-126,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10472039)
关键词 热冲击 DQM 动力响应 动态应力 TIMOSHENKO梁 thermal shock differential quadrature method (DQM) dynamic response Timoshenko beam
  • 相关文献

参考文献7

  • 1Lu T J, Fleck N A. The thermal shock resistance of solids [J]. Acta Materialia, 1998, 46(13) : 4755-4768.
  • 2Wang B L, Mai Y W, Zhang X H. Thermal shock resistance of functionally graded materials [ M ]. Acta Materialia, 2004, 52: 4961-4972.
  • 3Tian X G. A direct finite element method study of generalized thermoelastic problems[ J]. International Journal of Solids and Structures, 2006, 43:2050-2063,232-239.
  • 4王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 5Bellman R E, Casti J. Differential quadrature and long-term integration [ J ]. Mathenarics Analysis and Application, 1971, 34 : 235-243.
  • 6Wu X H, Shen Y. Differential quadrature domain decomposition method for a class of parabolic equations [ J ]. Computers and Mathematics with Applications, 2004, 48 : 1819-1832.
  • 7Shu C, Yao Q, Yeo K S. Block-marching in time with DQ discretization: an efficient method for time-depengent problems [J]. Computer Methods in Applied Mechanics and Engineering,, 2002, 191: 4587-4597.

共引文献89

同被引文献34

  • 1陈红永,陈海波.轴压作用下自由-自由运动梁振动特性研究[J].工程力学,2015,32(3):233-240. 被引量:6
  • 2王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 3李世荣,张靖华,赵永刚.功能梯度材料Timoshenko梁的热过屈曲分析[J].应用数学和力学,2006,27(6):709-715. 被引量:32
  • 4李进,田兴华.功能梯度材料的研究现状及应用[J].宁夏工程技术,2007,6(1):80-83. 被引量:10
  • 5Mote Jr C D. A study of band saw vibrations [J]. Journal of the Franklin Institute, 1965,279 (6) : 430- 444.
  • 6Fung R F, Lu P Y, Tseng C C. Non-linearly dynamic modeling of an axially moving beam with a tip mass [J]. Journal of Sound and Vibration, 1998, 218 (4) : 559-571.
  • 7Zhu W D, Ni J, Huang J. Active control of translating media with arbitrarily varying length[J]. Journalof Vibration and Acoustics, 2001,123(6):347-358.
  • 8Gosselin F, Paidoussis M P, Misra A K. Stability of a deploying/extruding beam in dense fluid[J]. Journal of Sound and Vibration, 2007,299 : 123-142.
  • 9Trevor Williams, Michael A Bolender, David B Doman, et al. An aerothermal flexible mode analysis of a hypersonic vehicle[Z]. AIAA-2006-6647.
  • 10Adam J Culler, Trevor Williams, Michael A Bolende. Aerothermal modeling and dynamic analysis of a hypersonic vehicle[Z]. AIAA-2007-6395.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部