期刊文献+

基于云模型的肿瘤标志物联合检测 被引量:3

Combined Detection of Tumor Marker Based on Cloud Model
下载PDF
导出
摘要 医学发现,将具有相关性的肿瘤指标进行联合检测能提高癌症的阳性检出率。基于云模型的关联规则挖掘通过将属性的定义域模糊化,从而达到更好的挖掘效果。该文提出一种基于云模型的检测组合发现方法,在大量的体检报告中进行关联挖掘,找出与癌症相关性最大的肿瘤指标。实验表明,挖掘出的前10个检测组合中,有80%符合目前的医学常识。 In the field of tumor marker, detecting some markers together can improve the successful detection score. The cloud model has great advantages in interval definition of numerical attribute. By fuzzing the boundary of attribute and membership degree, the cloud model can express the real world well. This paper presents a combined markers detection discovery method to mine association and find out most valuable tumor markers in examination dataset. The experiments show 80% of the top 10 combined markers are fit for iatrical knowledge.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第15期75-76,79,共3页 Computer Engineering
基金 福建省科技厅社会发展基金资助重点项目(2006Y0016)
关键词 数据挖掘 关联规则 云模型 肿瘤标志物 联合检测 data mining association rule cloud model tumor marker combined detection
  • 相关文献

参考文献2

二级参考文献7

共引文献53

同被引文献29

  • 1张志枫,王志国,周昌乐,许家佗,顾超,朱凤兰,包含飞.WZX中医舌色分析系统的设计与实现[J].医学信息(西安上半月),2005,18(6):550-553. 被引量:11
  • 2毛红朝,林坤辉,周昌乐,肖治民,张磊.面向中医望诊的人脸图像配准[J].郑州大学学报(理学版),2007,39(2):118-121. 被引量:4
  • 3谢季坚,刘承平.模糊数学方法与应用[M].武汉:华中科技大学出版社,2000:37-48.
  • 4Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C]//Proceedings of the 1993 ACM-SIGMOD International Con- (erence on Management of Data(SIGMOD'93). Washington, DC : ACM Press, 1993 : 207-216.
  • 5Park J S,Chen M S, Yu P S. An effective hash-based algorithm for mining association rules[C]//Proceeding of the 1995 ACM-SIGMOD International Conference on Managemem of Data ( SIGMOD' 95 ). San Jose, CA: ACM Press,1995:175-186.
  • 6Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]// Proceeding of the 1995 International Conference on Very Large Data Bases(VLDB'95). San Francisco,CA: Morgan Kaufmann Publishers Inc, 1995: 432-443.
  • 7Toivonen H. Sampling large databases for association rules [C]//Proeeeding of the 1996 International Conference on Very Large Data Bases (VLDB196). San Francisco, CA: Morgan Kaufmann Publishers Inc, 1996 :134-145.
  • 8Brin S, Motwani R, Ullman J D, et al. Dynamic itemset counting and implication rules for market basket analysis [C]//Proceeding of the 1997 ACM-SIGMOD Internation- al Conference on Management of Data (SIGMOD' 97). Tucson,AZ: ACM Press, 1997: 255-264.
  • 9Cheung D W, Han J, Ng V, et aI. Maintenance of discovered association rules in large an incremental updating technique [C]//Proceeding of the 1996 International Conference on Data Engineering (ICDE' 96). Washington, DC; IEEE Computer Society, 1996.. 106-114.
  • 10Kurgan L A, Cios K J. CAIM discretization algorithm [J]. IEEE Transactions on Knowledge and Data Engineering, 2004,16(2) : 145-153.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部