期刊文献+

基于双树复小波变换的图像融合方法 被引量:5

Method of Image Fusion Based on Dual-tree Complex Wavelet Transform
下载PDF
导出
摘要 为获得更好的融合效果,提出基于双树复小波变换的图像融合方法。双树复小波变换具有平移不变性、方向选择性等特点,适合进行图像融合,优于传统离散小波变换方法。给出多策略的融合规则,源图像小波变换后低频采用区域清晰度,高频采用区域标准差。灰度多聚焦图像和彩色多聚焦图像的融合实验测试以及评价指标的统计结果,表明了双树复小波变换方法的优势和所用融合规则的有效性。 An image fusion method based on Dual-Tree Complex Wavelet Transform(DT-CWT) is put forward in order to obtain better fusion effect. The DT-CWT is suitable to image fusion processing because of its shift invariance and directional selectivity, It is preferable to traditional Discrete Wavelet Transform(DWT). The fusion rules based on multi-scheme are also presented. The low frequency part employs local definition, and the high frequency parts employ local standard deviation after wavelet transform of source images. The experimental results of gray multi-focus images fusion and color multi-focus images fusion, and the statistics of evaluating index show that DT-CWT is superior to DWT and the proposed fusion rules are effective.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第15期176-178,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60475036)
关键词 小波变换 双树复小波变换 图像融合 多策略 Wavelet transform Dual-Tree Complex Wavelet Transforum(DT-CWT) image fusion multi-scheme
  • 相关文献

参考文献6

  • 1刘斌,彭嘉雄.基于分块的小波多聚焦图像融合方法[J].计算机工程,2005,31(5):41-42. 被引量:13
  • 2Hill E Canagarajah N, Bull D. Image Fusion Using Complex Wavelets[C]//Proceedings of the British Machine Conference. Cardiff, UK: [s. n.], 2002: 487-496.
  • 3Kingsbury N G. The Dual-tree Complex Wavelet Transform: A New Technique for Shift Invariance and Directional Filters[C]// Proceedings of 8th IEEE Digital Signal Processing Workshop. Bryce Canyon, Utah, USA: [s. n.], 1998: 86-89.
  • 4Eltoukhy H A, Kavusi S, A Computationally Efficient Algorithm for Multi-Focus hnage Reconstruction[C]//Proceedings of SPIE Electronic Imaging. [S. l.]: Elsevier North-Holland, Inc., 2003: 332-341.
  • 5田玉敏,梁若莹.计算机彩色输入输出设备常用颜色空间及其转换[J].计算机工程,2002,28(9):198-200. 被引量:30
  • 6Wang Zhou, Bovik A C. A Universal Image Quality Index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84.

二级参考文献10

  • 1大田登(日).色彩工学[M].西安:西安交通大学出版社,1998..
  • 2Ihrig S 李建军.印前数字图像处理实用技术[M].北京:电子工业出版社,1998..
  • 3Zhang Zhong, Blum R S. A Categorization of Multiscale- decomposition-based Image Fusion Schemes with a Performance Study for aDigital Camera Application[J]. Proc. of IEE E, 1999, 87(8):1315-1326.
  • 4David L H. An Introduction to Multi-sensor Fusion[J]. Proceeding of the IEEE, 1997,85(1):6-23.
  • 5Burt P J, Adelson E H. The Laplacian Pyramids as a Compact Image Code[J]. IEEE Transaction on Communication, 1983,31(4):532-540.
  • 6Toet A. Hierachical Image Fusion[J]. Machine Vision and Application,1990, 3(1):1-11.
  • 7Li Hui, Manjunath B S, Mitra S K. Multi-sensor Image Fusion Using the Wavelet Transform[J]. CVGIP: Graphical Models and InageProcessing, 1995,57 (3):235-245.
  • 8Mallat S G. A Theory for Multi-resolution Signal Decomposition: Thc Wavelet Representation[J]. IEEE Trans. on Pattern Analysis andMachine Intelligence, 1989,11(7):674-693.
  • 9蒲恬,方庆喆,倪国强.基于对比度的多分辨图像融合[J].电子学报,2000,28(12):116-118. 被引量:92
  • 10刘贵喜,杨万海.基于多尺度对比度塔的图像融合方法及性能评价[J].光学学报,2001,21(11):1336-1342. 被引量:76

共引文献41

同被引文献53

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部