摘要
本文研究了CM(计重数)分担三个集合的亚纯函数的唯一性问题,得到如下定理:设S={Z:Z^3-Z^2=1},f与g为两个非常数亚纯函数满足(?)(∞,f)>1/2及(?)(∞,g)>1/2.如果E(S,f)=E(S,g),E(O,f)=E(o,g)且E(∞,f)=E(∞,g),则有f(z)=g(z).例子表明结论的条件是精确的.
In this paper, the authors study the unicity for meromorphic function sharing three finite sets CM. Let S= {z:z3-z2=1}. Suppose that f and g are two nonconstantmeromorphic functions satisfying (∞,f)>1/2 and (∞,g)>1/2. If E(S. f)=E(S. g), E(o,f)=E(o,g) and E(∞,f) = E(∞,g),then f(z)=g(z). The example given shows that the result of the paper is accurate.
关键词
复分析
亚纯函数
亏值
唯一性
计重数
complex analysis
meromorphic function
deficient number
finite set
uniqueness