摘要
本文在实自反Banach空间的框架下,研究了一类具有Lispschitz条件的强增生型变分包含解的存在性、唯一性及其具有混合误差项的Ishikawa迭代程序的收敛性问题。在适当的条件下,证明了该迭代序列强收敛于变分包含问题的唯一解。其结果改进和推广了引文中相应的结果。
The paper studies the existence and uniquence of solutions and the corresponding convergence problem of the Ishikawa iterative sequence with mixed errors for a family of strongly accretive type variational inclusions satisfying the Lipschitz condition in a real reflexive Banach space. It is proved that, under suitable conditions, this iterative sequence converges strongly to the solution of this family of variational inclusions. The presented results extend and improve the corresponding results.
出处
《工程数学学报》
CSCD
北大核心
2008年第4期735-740,共6页
Chinese Journal of Engineering Mathematics
基金
Zhejiang Education Department(20070926)