期刊文献+

三维空间Stokes问题的两个各向异性非协调混合有限元逼近

Approximations of Two Anisotropic Nonconforming Mixed Finite Finite Elements to the Stokes Problem in 3-D
下载PDF
导出
摘要 构造了两个可用于求解三维Stokes问题的各向异性非协调混合有限元格式,在不需要通常的辅助空间的情况下给出相应的收敛性分析和最优的误差估计。这两种单元具有构造简单,整体自由度少的特点,是目前较为理想的单元。该方法对进一步设计相关的自适应算法有潜在的应用价值。 Two anisotropic nonconforming mixed finite elements for solving Stokes problem in threedimensional are constructed. The optimal error estimates are obtained without auxiliary finite element spaces used in the previous literature. With the advantages of simple structure and fewer degrees of freedom, the above two elements are considered to be comparatively ideal finite elements and the methods possess potential application value in developing the corresponding self-adaptive algorithms.
作者 石东洋 许超
机构地区 郑州大学数学系
出处 《工程数学学报》 CSCD 北大核心 2008年第4期753-756,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10671184)
关键词 STOKES问题 混合元 各向异性网格 最优误差估计 stokes problem mixed finite element anisotropic meshes optimal error estimate
  • 相关文献

参考文献10

  • 1Crouzeix M, Raviart P A. Conforming and non-conforming finite elements for solving the stationary Stokes equations[J]. RAIRO Analyse Numerique, 1973, 7:33-76
  • 2Cai Z Q, Jim Douglas, Xiu Ye. A stable nonconforming quadrilateral finite element method for the stationary stokes and navier-stokes equations[J]. Calcolo, 1999, 36:215-232
  • 3Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations[M]. Springer-Verlag, 1986
  • 4Apel Th, Nicaise S, Schoberl J. Crouzeix-Raviart type finite elements on anisotropic meshes[J]. Numerische Mathematik, 2001, 89:193-223
  • 5Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element[J]. Numerical Methods for Partial Differential Equations, 1992, 8:97-111
  • 6Apel Th, Nicaise S, Schoberl J. A non-conforming finite element method with anisotropic mesh grading for the stokes problem in domains with edges[J]. IMA Journal of Numerical Analysis, 2001, 21:843-856
  • 7Park C, Sheen D. Pl-nonconforming quadrilateral finite element methods for second-order elliptic problems[J]. SIAM Journal on Numerical Analysis, 2003, 41(2): 624-640
  • 8Chen S C, Shi D Y, Zhao Y C. Anisotropic interpolation and quasi-Wilsion element for narrow quadrilateral meshes[J]. IMA Journal of Numerical Analysis, 2004, 24:77-95
  • 9Dong-yangShi Shi-pengMao Shao-chunChen.AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS[J].Journal of Computational Mathematics,2005,23(3):261-274. 被引量:187
  • 10石东洋,王彩霞.位移障碍下变分不等式问题的各向异性非协调有限元方法[J].工程数学学报,2006,23(3):399-406. 被引量:8

二级参考文献18

  • 1石东洋,毛士鹏,陈绍春.问题变分不等式的一类各向异性Crouzeix-Raviart型有限元逼近[J].计算数学,2005,27(1):45-54. 被引量:11
  • 2石东洋,陈绍春.一类改进的Wilson任意四边形单元[J].高等学校计算数学学报,1994,16(2):161-167. 被引量:56
  • 3Ciarlet P G.The Finite Element Method for Ellptic Problem[M].North-Holland,Amsterdam,1978
  • 4Falk R.Error estimate for the approximation of a class of varitional inequalities[J].Mathematics of Computation,1974,28:963-971
  • 5Brezzi F,Hager W W,Raviart P A.Error estimates for the finite elment solution of varitional inequalities[J].Numerische Mathematik,1977,(28):431-443
  • 6Brezzi F,Sacchi GF.A finite element approximation of varitional inequality related to hydraulics[J].Calcolo,1976,13(3):259-273
  • 7Zienisek A,Vanmaele M.The interpolation theorem for narraw quadrilateral isotropic metric finite elements[J].Numerische Mathematik,1995,72:123-141
  • 8Apel Th,Dobrowolski M.Anisotropic interpolation with applications to the finite element method[J].Computing,1992,47(3):277-293
  • 9Apel Th.Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements[J].Computing,1998,60:157-174
  • 10Apel Th.Anisotropic Finite Elements:Local Estimates and Applications[M].B.G.Teubner Stuttgart,Leipzig,1999

共引文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部