期刊文献+

二维主分量分类器

Two-Dimensional Principle Component Classifier
下载PDF
导出
摘要 在主分量分类器(PCC)的基础上提出了二维主分量分类器方法,具有速度快、算法简便的特点.人脸性别分类结果表明,所提出的方法在识别性能上优于主分量分类器;另外,算法执行时间具有很大的改进. Two- dimensional principle component classifier (2DPCC) is proposed based the principle component classifier (PCC) algorithm. The proposed method is used in gender classification and the experimental results indicate that it is computationally mere efficient than the PCC algorithm, and the recognition results are better than PCC.
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第4期504-505,共2页 Journal of Jiamusi University:Natural Science Edition
基金 江苏省高校自然科学基础研究项目(07KJB510125) 盐城师范学院自然科学基金项目(06YCKL164)
关键词 主分量分类器 二维主分量分类器 人脸识别 principle component classifier (PCC) two - dimensional principle component classifier (2DPCC) face recognition
  • 相关文献

参考文献5

  • 1Hu W J, Song Q. Principle Component Classifier[C]. NIPS. 2000 Workshop on NewPerpectives in Kernel Based learning Methods in Breckenridge US,2004. http://svm.first.gmd.de/.
  • 2Kirby M and Sirovich L. "Application of the Karhunea- Loeve Procedure for the Characterization of Human Faces"[J]. IEEE Trans. PAMI, 1990, 12(1): 103-108.
  • 3Turk M and Pentland A."Eigenfaces for Recognition"[J]. Cognitive Neuroscience, 1991,13(1):71-86.
  • 4Yang J, Zhang D, Frangi A.F, et al.Two Dimensional PCA: A New Approach to Appearance - Based Face Representation and Recogntion [J]. IEEE Trans. PAMI, 2004,26, (1): 131-137.
  • 5Wang L W, Wang X, Zhang X R, et al. The Equivalence of Two- dimensional PCA to Line- based PCA[J]. Pattern Recognition Letters,2005, 26(1),57- 60.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部